Skip to main content

Maximal Monotone Operators and the Proximal Point Algorithm

  • Chapter
  • First Online:
  • 1691 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 108))

Abstract

In a finite-dimensional Euclidean space, we study the convergence of a proximal point method to a solution of the inclusion induced by a maximal monotone operator, under the presence of computational errors. The convergence of the method is established for nonsummable computational errors. We show that the proximal point method generates a good approximate solution, if the sequence of computational errors is bounded from above by a constant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bauschke HH, Borwein JM, Combettes PL (2003) Bregman monotone optimization algorithms. SIAM J Control Optim 42:596–636

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke H, Moffat S, Wang X (2012) Firmly nonexpansive mappings and maximally monotone operators: correspondence and duality. Set-Valued Var Anal 20:131–153

    Article  MathSciNet  MATH  Google Scholar 

  3. Burachik RS, Lopes JO, Da Silva GJP (2009) An inexact interior point proximal method for the variational inequality problem. Comput Appl Math 28:15–36

    MathSciNet  MATH  Google Scholar 

  4. Butnariu D, Kassay G (2008) A proximal-projection method for finding zeros of set-valued operators. SIAM J Control Optim 47:2096–2136

    Article  MathSciNet  MATH  Google Scholar 

  5. Censor Y, Zenios SA (1992) The proximal minimization algorithm with D-functions. J. Optim. Theory Appl. 73:451–464

    Article  MathSciNet  MATH  Google Scholar 

  6. Guler O (1991) On the convergence of the proximal point algorithm for convex minimization. SIAM J Control Optim 29:403–419

    Article  MathSciNet  MATH  Google Scholar 

  7. Hager WW, Zhang H (2007) Asymptotic convergence analysis of a new class of proximal point methods. SIAM J Control Optim 46:1683–1704

    Article  MathSciNet  MATH  Google Scholar 

  8. Kassay G (1985) The proximal points algorithm for reflexive Banach spaces. Stud Univ Babes-Bolyai Math 30:9–17

    MathSciNet  MATH  Google Scholar 

  9. Martinet B (1978) Pertubation des methodes d’optimisation: application. RAIRO Anal Numer 12:153–171

    MathSciNet  MATH  Google Scholar 

  10. Minty GJ (1962) Monotone (nonlinear) operators in Hilbert space. Duke Math J 29:341–346

    Article  MathSciNet  MATH  Google Scholar 

  11. Minty GJ (1964) On the monotonicity of the gradient of a convex function. Pac J Math 14:243–247

    Article  MathSciNet  MATH  Google Scholar 

  12. Moreau JJ (1965) Proximite et dualite dans un espace Hilbertien. Bull Soc Math Fr 93:273–299

    MathSciNet  MATH  Google Scholar 

  13. Rockafellar RT (1976) Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math Oper Res 1:97–116

    Article  MathSciNet  MATH  Google Scholar 

  14. Rockafellar RT (1976) Monotone operators and the proximal point algorithm. SIAM J Control Optim 14:877–898

    Article  MathSciNet  MATH  Google Scholar 

  15. Solodov MV, Svaiter BF (2000) Error bounds for proximal point subproblems and associated inexact proximal point algorithms. Math Program 88:371–389

    Article  MathSciNet  MATH  Google Scholar 

  16. Solodov MV, Svaiter BF (2001) A unified framework for some inexact proximal point algorithms. Numer Funct Anal Optim 22:1013–1035

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu H-K (2006) A regularization method for the proximal point algorithm. J Global Optim 36:115–125

    Article  MathSciNet  MATH  Google Scholar 

  18. Yamashita N, Kanzow C, Morimoto T, Fukushima M (2001) An infeasible interior proximal method for convex programming problems with linear constraints. J Nonlinear Convex Anal 2:139–156

    MathSciNet  MATH  Google Scholar 

  19. Zaslavski AJ (2011) Maximal monotone operators and the proximal point algorithm in the presence of computational errors. J. Optim Theory Appl 150:20–32

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaslavski, A.J. (2016). Maximal Monotone Operators and the Proximal Point Algorithm. In: Numerical Optimization with Computational Errors. Springer Optimization and Its Applications, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-319-30921-7_11

Download citation

Publish with us

Policies and ethics