Skip to main content

Multibody Systems Formulation

  • Chapter
  • First Online:
Contact Force Models for Multibody Dynamics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 226))

Abstract

This chapter includes the main components necessary to formulate the dynamics of planar multibody systems. In this process, the fundamental issues associated with embryogenesis of multibody systems are presented. The main types of coordinates utilized in the formulations of general planar multibody systems are described. In addition, the fundamental characteristics of some relevant constraint equations are also presented in this chapter. Then, the key aspects related to the dynamic analysis of planar multibody mechanical systems are discussed. The formulation of multibody system dynamics adopted here uses the generalized absolute coordinates to derive the multibody system equations of motion. This formulation results in the establishment of a mixed set of ordinary differential and algebraic equations, which are numerically solved in order to predict the dynamic behavior of multibody systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso M, Finn EJ (1981) Física: um curso universitário. Vol I—Mecânica, Editora Edgard Blücher Ltda, São Paulo, Brasil

    Google Scholar 

  • Ambrósio J, Veríssimo P (2009) Sensitivity of a vehicle ride to the suspension bushing characteristics. J Mech Sci Technol 23:1075–1082

    Article  Google Scholar 

  • Ambrósio JAC, Neto MA, Leal RP (2007) Optimization of a complex flexible multibody systems with composite materials. Multibody Syst Dyn 18:117–144

    Article  MATH  Google Scholar 

  • Anand DK, Cunniff PF (1973) Engineering mechanics dynamics. Houghton Mifflin Company, Boston

    Google Scholar 

  • Arnold VI (1987) Métodos matemáticas da mecânica clássica. Editora Mir Moscow, Soviet Union

    Google Scholar 

  • Burton P (1979) Kinematics and dynamics of planar machinery. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Ceccarelli M (1998) Mechanism schemes in teaching: a historical overview. J Mech Des 120:533–541

    Article  Google Scholar 

  • Ceccarelli M, Cigola M (2001) Trends in the drawing of mechanisms since the early Middle Ages. Proc Inst Mech Eng Part C J Mech Eng Sci 215:269–289

    Article  Google Scholar 

  • Chace MA (1967) Analysis of the time-dependence of multi-freedom mechanical systems in relative coordinates. J Eng Ind 89:119–125

    Article  Google Scholar 

  • Chapra SC, Canale RP (1989) Numerical methods for engineers. 2nd ed. McGraw-Hill

    Google Scholar 

  • Eich-Soellner E, Führer C (1998) Numerical methods in multibody dynamics. Teubner-Verlag Stuttgart, Germany

    Book  MATH  Google Scholar 

  • Flores P (2015) Concepts and formulations for spatial multibody dynamics. Springer, Berlin

    Google Scholar 

  • Flores P, Claro JCP (2007) Cinemática de mecanismos. Almedina, Portugal

    Google Scholar 

  • Flores P, Ambrósio J, Claro JCP, Lankarani HM (2008) Kinematics and dynamics of multibody systems with imperfect joints: models and case studies. In lecture notes in applied and computational mechanics, vol 34. Springer, Berlin, Heidelberg, New-York

    Google Scholar 

  • Galileo G (1638) Dialogues concerning two new sciences (trans: Crew H, de Salvio A, 1914, reprinted in 1956). Macmillan, New York

    Google Scholar 

  • Hartog JP (1948) Mechanics. Dover Publications, New York

    MATH  Google Scholar 

  • Haug EJ (1989) Computer-aided kinematics and dynamics of mechanical systems—volume I: basic methods. Allyn and Bacon, Boston, Massachusetts

    Google Scholar 

  • Huston RL (1990) Multibody dynamics. Butterworth-Heinemann, Boston, Massachusetts

    MATH  Google Scholar 

  • Jálon JG (2007) Twenty-five years of natural coordinates. Multibody Syst Dyn 18:15–33

    Article  MathSciNet  MATH  Google Scholar 

  • Jálon JG, Bayo E (1994) Kinematic and dynamic simulations of multibody systems: the real-time challenge. Springer, New York

    Book  Google Scholar 

  • Levinson L (1970) Fundamentals of engineering mechanics. Mir Publishers, Moscow

    Google Scholar 

  • Meireles F (2007) Kinematics and dynamics of biomechanical models using multibody systems methodologies: a computational and experimental study of human gait. M.Sc. Dissertation, University of Minho, Guimarães, Portugal

    Google Scholar 

  • Müller A (2009) Generic mobility of rigid body mechanisms. Mech Mach Theory 44(6):1240–1255

    Article  MATH  Google Scholar 

  • Newton I (1687) Philosophiae Naturalis Principia Mathematica. London

    Google Scholar 

  • Nikravesh PE (1988) Computer-aided analysis of mechanical systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Nikravesh PE (2007) Initial condition correction in multibody dynamics. Multibody Syst Dyn 18:107–115

    Article  MathSciNet  MATH  Google Scholar 

  • Nikravesh PE (2008) Planar multibody dynamics: formulation, programming, and applications. CRC Press, London

    MATH  Google Scholar 

  • Orlandea N, Chace MA, Calahan DA (1977) A sparsity oriented approach to the dynamic analysis and design of mechanical systems—part 1 and 2. J Eng Ind 99:773–784

    Article  Google Scholar 

  • Paul B, Krajcinovic D (1970) Computer analysis of machines with planar motion, part 1—kinematics, part 2—dynamics. J Appl Mech 37:697–712

    Article  Google Scholar 

  • Pombo J, Ambrósio J (2008) Application of a wheel-rail contact model to railway dynamics in small radius curved tracks. Multibody Syst Dyn 19:91–114

    Article  MATH  Google Scholar 

  • Rahnejat H (2000) Multi-body dynamics: historical evolution and application. Proc Inst Mech Eng Part C J Mech Eng Sci 214:149–173

    Article  Google Scholar 

  • Reuleaux F (1963) The kinematics of machinery. Dover, New York

    Google Scholar 

  • Schiehlen W (1990) Multibody systems handbook. Springer, Berlin

    Book  MATH  Google Scholar 

  • Seabra E, Flores P, Silva JF (2007) Theoretical and experimental analysis of an industrial cutting file machine using multibody systems methodology. In: Bottasso CL, Masarati P, Trainelli L (eds) Proceedings of ECCOMAS thematic conference multibody dynamics 2007. Milan, Italy, 25–28 June, 12 p

    Google Scholar 

  • Shabana AA (1989) Dynamics of multibody systems. Wiley, New York

    MATH  Google Scholar 

  • Sheth PN, Uicker JJ (1971) IMP (Integrated Mechanism Program): a computer-aided design analysis system for mechanisms and linkages. J Eng Ind 94(2):454–464

    Article  Google Scholar 

  • Shigley JE, Uicker JJ (1995) Theory of machines and mechanisms. McGraw Hill, New York

    Google Scholar 

  • Silva M, (2003) Human motion analysis using multibody dynamics and optimization tools. Ph.D. Dissertation, Technical University of Lisbon, Portugal

    Google Scholar 

  • Silva MPT, Ambrósio JAC (2002) Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst Dyn 8:219–239

    Article  MATH  Google Scholar 

  • Späth H (1995) One dimensional spline interpolation algorithms. AK Peters, Wellesley

    MATH  Google Scholar 

  • Targ S (1976) Curso Técnico-prático de Mecânica. Lopes da Silva Editora, Rio de Janeiro

    Google Scholar 

  • Wehage RA, Haug EJ (1982) Generalized coordinate partitioning for dimension reduction in analysis of constrained systems. J Mech Des 104:247–255

    Article  Google Scholar 

  • Zhu W-H, Piedboeuf J-C, Gonthier Y (2006) A dynamics formulation of general constrained robots. Multibody Syst Dyn 16:37–54

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Flores .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Flores, P., Lankarani, H.M. (2016). Multibody Systems Formulation. In: Contact Force Models for Multibody Dynamics. Solid Mechanics and Its Applications, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30897-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30897-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30896-8

  • Online ISBN: 978-3-319-30897-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics