Skip to main content

Objectifying Treatment Outcomes Using Musculoskeletal Modelling-Based Simulations of Motion

  • Living reference work entry
  • First Online:
Handbook of Human Motion

Abstract

Three-dimensional motion capture is currently widely integrated in human movement research studies as well as in the clinical follow-up of patients. However, there are certain quantities that are of particular interest to clinicians that cannot be measured experimentally, and thus there are questions that remained unanswered. Modelling and simulation provide the ideal framework through which to examine quantities in silico that cannot be measured in vivo. To study musculoskeletal loading, muscle forces and joint contact forces can be calculated. Furthermore, the causal relationships between muscle activity and resulting motion can be determined, therefore clarifying the functional role of muscles during motion and elucidating the effect of muscle weakness, aberrant movement, and bone geometry. This chapter covers modelling and simulation methods that are currently in use and their applications to advancing the understanding of pathological movement and supporting clinical decision-making. It focusses in particular on the use of modelling and simulation in understanding locomotion in cerebral palsy, osteoarthritis, total joint replacement, amputation, and stroke and discusses future directions and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackland DC, Lin Y-C, Pandy MG (2012) Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis. J Biomech 45(8):1463–1471

    Article  Google Scholar 

  • Akagi R et al (2009) Muscle volume compared to cross-sectional area is more appropriate for evaluating muscle strength in young and elderly individuals. Age Ageing 38(5):564–569

    Article  Google Scholar 

  • Allen JL, Neptune RR (2012) Three-dimensional modular control of human walking. J Biomech 45:2157–2163

    Article  Google Scholar 

  • Allen JL, Kautz SA, Neptune RR (2013) The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance. JCLB 28:697–704

    Google Scholar 

  • Allen JL, Kautz SA, Neptune RR (2014) Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis. JCLB 29:780–786

    Google Scholar 

  • Al-Zahrani KS, Bakheit AM (2002) A study of the gait characteristics of patients with chronic osteoarthritis of the knee. Disabil Rehabil 24(5):275–280

    Article  Google Scholar 

  • Anderson FC, Pandy MG (2001) Static and dynamic optimization solutions for gait are practically equivalent. J Biomech 34(2):153–161

    Article  Google Scholar 

  • Anderson FC, Pandy MG (2003) Individual muscle contributions to support in normal walking. Gait Posture 17:159–169

    Article  Google Scholar 

  • Arnold AS, Delp SL (2001) Rotational moment arms of the medial hamstrings and adductors vary with femoral geometry and limb position: implications for the treatment of internally rotated gait. J Biomech 34(4):437–447

    Article  Google Scholar 

  • Arnold AS, Delp SL (2005) Computer modeling of gait abnormalities in cerebral palsy: application to treatment planning. Theor Issues Ergon Sci 6(3–4):305–312

    Article  Google Scholar 

  • Arnold AS et al (2000) Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput Aided Surg 5(2):108–119

    Article  Google Scholar 

  • Arnold AS, Blemker SS, Delp SL (2001) Evaluation of a deformable musculoskeletal model for estimating muscle–tendon lengths during crouch gait. Ann Biomed Eng 29(3):263–274

    Article  Google Scholar 

  • Arnold EM et al (2010) A model of the lower limb for analysis of human movement. Ann Biomed Eng 38(2):269–279

    Article  Google Scholar 

  • Arokoski MH et al (2002) Hip muscle strength and muscle cross sectional area in men with and without hip osteoarthritis. J Rheumatol 29(10):2185–2195

    Google Scholar 

  • Bae TS et al (2007) Dynamic analysis of above-knee amputee gait. Clin Biomech 22(5):557–566

    Article  Google Scholar 

  • Baert IAC et al (2013) Gait characteristics and lower limb muscle strength in women with early and established knee osteoarthritis. Clin Biomech (Bristol, Avon) 28(1):40–47

    Article  Google Scholar 

  • Bartels W (2011) Biomechanical modeling of the lower limb for pre-operative planning. KU Leuven, Leuven

    Google Scholar 

  • Bartels W et al (2015) Computed tomography-based joint locations affect calculation of joint moments during gait when compared to scaling approaches. Comput Methods Biomech Biomed Engin 18(11):1238–1251

    Article  Google Scholar 

  • Benedetti MG et al (2003) Muscle activation pattern and gait biomechanics after total knee replacement. Clin Biomech 18(9):871–876

    Article  Google Scholar 

  • Bergmann G et al (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34(7):859–871

    Article  Google Scholar 

  • Blemker SS et al (2007) Image-based musculoskeletal modeling: applications, advances, and future opportunities. J Magn Reson Imaging 25(2):441–451

    Article  Google Scholar 

  • Bosmans L et al (2014) Hip contact force in presence of aberrant bone geometry during normal and pathological gait. J Orthop Res 32(11):1406–1415

    Article  Google Scholar 

  • Bosmans L et al (2015) Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry. J Biomech 48(10):2116–2123

    Article  Google Scholar 

  • Bosmans L et al (2016) The role of altered proximal femoral geometry in impaired pelvis stability and hip control during CP gait: a simulation study. Gait Posture 44:61–67

    Article  Google Scholar 

  • Brand RA, Crowninshield RD (1979) The effect of cane use on hip contact force. Clin Orthop Relat Res 147:181–184

    Google Scholar 

  • Brand RA et al (1994) Comparison of hip force calculations and measurements in the same patient. J Arthroplast 9(1):45–51

    Article  Google Scholar 

  • Burkett B, Smeathers J, Barker TM (2004) A computer model to simulate the swing phase of a Transfemoral prosthesis. J Appl Biomech 20(1):25–37

    Article  Google Scholar 

  • Cappellini G et al (2006) Motor patterns in human walking and running. J Neurophysiol 95(6):3426–3437

    Article  MathSciNet  Google Scholar 

  • Carriero A, Jonkers I, Shefelbine SJ (2011) Mechanobiological prediction of proximal femoral deformities in children with cerebral palsy. Comput Methods Biomech Biomed Engin 14(3):253–262

    Article  Google Scholar 

  • Carriero A et al (2012) Influence of altered gait patterns on the hip joint contact forces. Comput Methods in Biomech Biomed Engin. https://doi.org/10.1080/10255842.2012.683575

  • Chen Z et al (2015) Effect of component mal-rotation on knee loading in total knee arthroplasty using multi-body dynamics modeling under a simulated walking gait. J Orthop Res 33(9):1287–1296

    Article  Google Scholar 

  • Clark DJ et al (2010) Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol 103(2):844–857

    Article  Google Scholar 

  • Correa TA et al (2010) Contributions of individual muscles to hip joint contact force in normal walking. J Biomech 43(8):1618–1622

    Article  Google Scholar 

  • Correa TA et al (2012) Potential of lower-limb muscles to accelerate the body during cerebral palsy gait. Gait Posture 36(2):194–200

    Article  Google Scholar 

  • Crowninshield R, Brand R, Johnston R (1978) The effects of walking velocity and age on hip kinematics and kinetics. Clin Orthop Relat Res 132:140–144

    Google Scholar 

  • Damm P et al (2010) Total hip joint prosthesis for in vivo measurement of forces and moments. Med Eng Phys 32(1):95–100

    Article  Google Scholar 

  • Damm P et al (2013) In vivo hip joint loads during three methods of walking with forearm crutches. Clin Biomech 28(5):530–535

    Article  Google Scholar 

  • Damsgaard M et al (2006) Analysis of musculoskeletal systems in the AnyBody modeling system. Simul Model Pract Theory 14(8):1100–1111

    Article  Google Scholar 

  • De Groote F et al (2009) A physiology based inverse dynamic analysis of human gait: potential and perspectives. Comput Methods Biomech Biomed Engin 12(5):563–574

    Article  Google Scholar 

  • De Groote F et al (2010) Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors. J Biomech 43(10):1876–1883

    Article  Google Scholar 

  • De Groote F et al (2012) A physiology-based inverse dynamic analysis of human gait using sequential convex programming: a comparative study. Comput Methods Biomech Biomed Engin 15(10):1093–1102

    Article  Google Scholar 

  • De Groote F et al (2016) Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem. Ann Biomed Eng 44(10):2922–2936

    Article  Google Scholar 

  • De Haan R et al (2008) Revision of metal-on-metal resurfacing arthroplasty of the hip: the influence of malpositioning of the components. J Bone Joint Surg 90(9):1158–1163

    Article  Google Scholar 

  • Delp SL, Loan JP (1995) A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput Biol Med 25(1):21–34

    Article  Google Scholar 

  • Delp SL, Zajac FE (1992) Force- and moment-generating capacity of lower-extremity muscles before and after tendon lengthening. Clin Orthop Relat Res 284:247–259

    Google Scholar 

  • Delp SL, Ringwelski DA, Carroll NC (1994) Transfer of the rectus femoris: effects of transfer site on moment arms about the knee and hip. J Biomech 27(10):1201–1211

    Article  Google Scholar 

  • Delp SL, Arnold AS, Piazza SJ (1998) Graphics-based modeling and analysis of gait abnormalities. Biomed Mater Eng 8(3–4):227–240

    Google Scholar 

  • Delp SL et al (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950

    Article  Google Scholar 

  • Duda G, Brand D, Freitag S (1996) Variability of femoral muscle attachments. J Biomech 29(9):1185–1190

    Article  Google Scholar 

  • Duffell LD et al (2014) Balance and gait adaptations in patients with early knee osteoarthritis. Gait Posture 39(4):1057–1061

    Article  Google Scholar 

  • Erdemir A (2016) Open knee: Open Source Modeling & Simulation to enable scientific discovery and clinical Care in Knee Biomechanics. J Knee Surg 19(2):107–116

    Google Scholar 

  • Fang L, Jia X, Wang R (2007) Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment. Clin Biomech 22(10):1125–1131

    Article  Google Scholar 

  • Fang L et al (2009) Simulation of the ligament forces affected by prosthetic alignment in a trans-tibial amputee case study. Med Eng Phys 31:793–798

    Article  Google Scholar 

  • Fey NP, Klute GK, Neptune RR (2012) Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study. J Biomech Eng 134(11):111005

    Article  Google Scholar 

  • Fey NP, Klute GK, Neptune RR (2013) Altering prosthetic foot stiffness influences foot and muscle function during below-knee amputee walking: a modeling and simulation analysis. J Biomech 46(4):637–644

    Article  Google Scholar 

  • Foroughi N, Smith R, Vanwanseele B (2009) The association of external knee adduction moment with biomechanical variables in osteoarthritis: a systematic review. Knee 16(5):303–309

    Article  Google Scholar 

  • Foucher KC, Hurwitz DE, Wimmer MA (2007) Preoperative gait adaptations persist one year after surgery in clinically well-functioning total hip replacement patients. J Biomech 40(15):3432–3437

    Article  Google Scholar 

  • Foucher KC et al (2011) Time course and extent of functional recovery during the first postoperative year after minimally invasive total hip arthroplasty with two different surgical approaches--a randomized controlled trial. J Biomech 44(3):372–378

    Article  Google Scholar 

  • Fox MD et al (2009) Mechanisms of improved knee flexion after rectus femoris transfer surgery. J Biomech 42(5):614–619

    Article  Google Scholar 

  • Fregly BJ, D’Lima DD, Colwell CW (2009) Effective gait patterns for offloading the medial compartment of the knee. J Orthop Res 27(8):1016–1021

    Article  Google Scholar 

  • Fregly BJ et al (2012) Grand challenge competition to predict in vivo knee loads. J Orthop Res 30(4):503–513

    Article  Google Scholar 

  • Gök H, Ergin S, Yavuzer G (2002) Kinetic and kinematic characteristics of gait in patients with medial knee arthrosis. Acta Orthop Scand 73(6):647–652

    Article  Google Scholar 

  • Goldberg EJ, Neptune RR (2007) Compensatory strategies during normal walking in response to muscle weakness and increased hip joint stiffness. Gait Posture 25(3):360–367

    Article  Google Scholar 

  • Guo M, Axe MJ, Manal K (2007) The influence of foot progression angle on the knee adduction moment during walking and stair climbing in pain free individuals with knee osteoarthritis. Gait Posture 26(3):436–441

    Article  Google Scholar 

  • Hainisch R et al (2012) Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data. Multibody Sys Dyn 28(1–2):143–156

    Article  Google Scholar 

  • Hall AL et al (2011) Relationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis. Clin Biomech 26(5):509–515

    Article  Google Scholar 

  • Halloran JP et al (2012) Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models. Ann Biomed Eng 40(11):2456–2474

    Article  Google Scholar 

  • Hausselle J et al (2012) Subject-specific musculoskeletal model of the lower limb in a lying and standing position. Comput Methods Biomech Biomed Engin 17(5):37–41

    Google Scholar 

  • He J, Norling WR, Wang Y (1997) A dynamic neuromuscular model for describing the pendulum test of spasticity. IEEE Trans Biomed Eng 44(3):175–184

    Article  Google Scholar 

  • Heller MO et al (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34(7):883–893

    Article  Google Scholar 

  • Heller MO et al (2005) Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech 38(5):1155–1163

    Article  Google Scholar 

  • Henak CR et al (2011) Role of the acetabular labrum in load support across the hip joint. J Biomech 44(12):2201–2206

    Article  Google Scholar 

  • Hicks J et al (2007) The effect of excessive tibial torsion on the capacity of muscles to extend the hip and knee during single-limb stance. Gait Posture 26(4):546–552

    Article  Google Scholar 

  • Hicks JL et al (2008) Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait. J Biomech 41(5):960–967

    Article  Google Scholar 

  • Hicks JL et al (2015) Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J Biomech Eng 137(2):20905

    Article  Google Scholar 

  • Higginson JS et al (2006) Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J Biomech 39:1769–1777

    Article  Google Scholar 

  • Hinman RS et al (2010) Hip muscle weakness in individuals with medial knee osteoarthritis. Arthritis Care Res 62(8):1190–1193

    Article  Google Scholar 

  • Hoang HX, Reinbolt JA (2012) Crouched posture maximizes ground reaction forces generated by muscles. Gait Posture 36(3):405–408

    Article  Google Scholar 

  • Horstmann T et al (2013) Changes in gait patterns and muscle activity following total hip arthroplasty: a six-month follow-up. Clin Biomech 28(7):762–769

    Article  Google Scholar 

  • Hsiao H et al (2016) Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke. J Biomech 49(3):388–395

    Article  Google Scholar 

  • Hsu A, Tang P, Jan M (2003) Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil 84(8):1185–1193

    Article  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 5561:267–282

    Article  Google Scholar 

  • Jaegers SMHJ, Arendzen JH, de Jongh HJ (1995) Prosthetic gait of unilateral transfemoral amputees: a kinematic study. Arch Phys Med Rehabil 76(8):736–743

    Article  Google Scholar 

  • Jansen K et al (2012) Similar muscles contribute to horizontal and vertical acceleration of center of mass in forward and backward walking: implications for neural control. J Neurophysiol 107(12):3385–3396

    Article  Google Scholar 

  • Jansen K et al (2013) Muscle contributions to center of mass acceleration adapt to asymmetric walking in healthy subjects. Gait Posture 38(4):739–744

    Article  Google Scholar 

  • Jansen K, De Groote F, Aerts W et al (2014a) Altering length and velocity feedback during a neuro-musculoskeletal simulation of normal gait contributes to hemiparetic gait characteristics. J Neuroeng Rehabil 11:78

    Article  Google Scholar 

  • Jansen K, De Groote F, Duysens J et al (2014b) How gravity and muscle action control mediolateral center of mass excursion during slow walking: a simulation study. Gait Posture 39(1):91–97

    Article  Google Scholar 

  • Jonkers I, Stewart C, Spaepen A (2003a) The complementary role of the plantarflexors, hamstrings and gluteus maximus in the control of stance limb stability during gait. Gait Posture 17(3):264–272

    Article  Google Scholar 

  • Jonkers I, Stewart C, Spaepen A (2003b) The study of muscle action during single support and swing phase of gait: clinical relevance of forward simulation techniques. Gait Posture 17(2):97–105

    Article  Google Scholar 

  • Jonkers I et al (2008) Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement. J Biomech 41(16):3405–3413

    Article  Google Scholar 

  • Kaufman KR et al (2001) Gait characteristics of patients with knee osteoarthritis. J Biomech 34(7):907–915

    Article  Google Scholar 

  • Kilgus D et al (1991) Patient activity, sports participation, and impact loading on the durability of cemented total hip replacements. Clin Orthop Relat Res 269:25–31

    Google Scholar 

  • Klein Horsman MD (2007) The Twente lower extremity model: consistent dynamic simulation of the human Locomotor apparatus. University of Twente, Enschede

    Google Scholar 

  • Knarr BA, Kesar TM et al (2013a) Changes in the activation and function of the ankle plantar flexor muscles due to gait retraining in chronic stroke survivors. J Neuroeng Rehabil 10(1):1

    Article  Google Scholar 

  • Knarr BA, Reisman DS et al (2013b) Understanding compensatory strategies for muscle weakness during gait by simulating activation deficits seen post-stroke. Gait Posture 38(2):270–275

    Article  Google Scholar 

  • Knarr BA et al (2014) Changes in predicted muscle coordination with subject-specific muscle parameters for individuals after stroke. Stroke Res Treat 2014:321747

    Google Scholar 

  • Koelewijn AD, van den Bogert AJ (2016) Joint contact forces can be reduced by improving joint moment symmetry in below-knee amputee gait simulations. Gait Posture 49:219–225

    Article  Google Scholar 

  • Kulkarni J, Gaine W (2005) Chronic low back pain in traumatic lower limb amputees. Clin Rehabil 19:81–86

    Article  Google Scholar 

  • Kumar D, Manal KT, Rudolph KS (2013) Knee joint loading during gait in healthy controls and individuals with knee osteoarthritis. Osteoarthr Cartil 21(2):298–305

    Article  Google Scholar 

  • LaPre AK, Umberger BR, Sup FC IV (2016) A robotic ankle prosthesis with dynamic alignment. J Med Devices 10(c):1–9

    Google Scholar 

  • Lenaerts G et al (2008) Subject-specific hip geometry affects predicted hip joint contact forces during gait. J Biomech 41(6):1243–1252

    Article  Google Scholar 

  • Lenaerts G, Mulier M et al (2009a) Aberrant pelvis and hip kinematics impair hip loading before and after total hip replacement. Gait Posture 30(3):296–302

    Article  Google Scholar 

  • Lenaerts G, Bartels W et al (2009b) Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait. J Biomech 42(9):1246–1251

    Article  Google Scholar 

  • Lenhart RL (2015) Influence of surgery on musculoskeletal mechanics in children with crouch gait. University of Wisconsin-Madison, Madison

    Google Scholar 

  • Lenhart RL et al (2015) Prediction and validation of load-dependent behavior of the Tibiofemoral and Patellofemoral joints during movement. Ann Biomed Eng 43(11):2675–2685

    Article  Google Scholar 

  • Lenhart RL et al (2016) Influence of patellar position on the knee extensor mechanism in normal and crouched walking. J Biomech 51:1–7

    Article  Google Scholar 

  • Lewek MD, Rudolph KS, Snyder-Mackler L (2004) Control of frontal plane knee laxity during gait in patients with medial compartment knee osteoarthritis. Osteoarthr Cartil 12(9):745–751

    Article  Google Scholar 

  • Li K et al (2013) Trunk muscle action compensates for reduced quadriceps force during walking after total knee arthroplasty. Gait Posture 38(1):79–85

    Article  Google Scholar 

  • Li J et al (2014) Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: implications for preclinical testing. Clin Biomech 29(7):747–751

    Article  Google Scholar 

  • Li J et al (2015) Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking. Clin Biomech 30(5):513–519

    Article  Google Scholar 

  • Liu MQ et al (2006) Muscles that support the body also modulate forward progression during walking. J Biomech 39:2623–2630

    Article  Google Scholar 

  • Lloyd DG, Besier TF (2003) An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 36(6):765–776

    Article  Google Scholar 

  • Mansouri M et al (2016) Rectus femoris transfer surgery affects balance recovery in children with cerebral palsy: a computer simulation study. Gait Posture 43:24–30

    Article  Google Scholar 

  • Marra MA et al (2016) A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of Total knee Arthroplasty. J Biomech Eng 137(2):020904

    Article  Google Scholar 

  • Martelli S et al (2011) Effect of sub-optimal neuromotor control on the hip joint load during level walking. J Biomech 44(9):1716–1721

    Article  Google Scholar 

  • McGowan CP, Kram R, Neptune RR (2009) Modulation of leg muscle function in response to altered demand for body support and forward propulsion during walking. J Biomech 42(7):850–856

    Article  Google Scholar 

  • Meireles S et al (2016) Knee contact forces are not altered in early knee osteoarthritis. Gait Posture 45:115–120

    Article  Google Scholar 

  • Meireles S et al (2017) Medial knee contact forces are altered in subjects with early OA during gait but not during step-up and -over task. PLoS One 12(11):e0187583

    Article  Google Scholar 

  • Mellon SJ et al (2013) Individual motion patterns during gait and sit-to-stand contribute to edge-loading risk in metal-on-metal hip resurfacing. J Eng Med 227(7):799–810

    Article  Google Scholar 

  • Meyer AJ et al (2013) Are external knee load and EMG measures accurate indicators of internal knee contact forces during gait? J Orthop Res 31(6):921–929

    Article  Google Scholar 

  • Meyer CAG et al (2015) Biomechanical gait features associated with hip osteoarthritis: towards a better definition of clinical hallmarks. J Orthop Res 33(10):1498–1507

    Article  Google Scholar 

  • Meyer CAG et al (2016) Evaluation of stair motion contributes to new insights into hip osteoarthritis-related motion pathomechanics. J Orthop Res 34(2):187–196

    Article  Google Scholar 

  • Miyazaki T et al (2002) Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis 61:617–622

    Article  Google Scholar 

  • Modenese L, Phillips ATM (2012) Prediction of hip contact forces and muscle activations during walking at different speeds. Multibody Sys Dyn 28(1–2):157–168

    Article  Google Scholar 

  • Mündermann A et al (2008) Implications of increased medio-lateral trunk sway for ambulatory mechanics. J Biomech 41(1):165–170

    Article  Google Scholar 

  • Navacchia A et al (2016) Subject-specific modeling of muscle force and knee contact in total knee arthroplasty. J Orthop Res 34(9):1576–1587

    Article  Google Scholar 

  • Neptune RR, Kautz SA, Zajac FE (2001) Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech 34:1387–1398

    Article  Google Scholar 

  • Neptune RR, Zajac FE, Kautz SA (2004) Muscle force redistributes segmental power for body progression during walking. Gait Posture 19:194–205

    Article  Google Scholar 

  • Ng KCG et al (2016) Hip joint stresses due to cam-type femoroacetabular impingement: a systematic review of finite element simulations. PLoS One 11(1):1–18

    Google Scholar 

  • Oberhofer K et al (2010) Subject-specific modelling of lower limb muscles in children with cerebral palsy. Clin Biomech 25(1):88–94

    Article  Google Scholar 

  • Pancanti A, Bernakiewicz M, Viceconti M (2003) The primary stability of a cementless stem varies between subjects as much as between activities. J Biomech 36(6):777–785

    Article  Google Scholar 

  • Pandy MG, Lin Y-C, Kim HJ (2010) Muscle coordination of mediolateral balance in normal walking. J Biomech 43:2055–2064

    Article  Google Scholar 

  • Pedersen D et al (1987) Direct comparison of muscle force predictions using linear and nonlinear programming. J Biomech Eng 109:192–199

    Article  Google Scholar 

  • Pejhan S, Farahmand F & Parnianpour M (2008) Design optimization of an above-knee prosthesis based on the kinematics of gait. 30th Annual International IEEE EMBS Conference, pp. 4274–4277

    Google Scholar 

  • Pellikaan P et al (2014) Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity. J Biomech 47(5):1144–1150

    Article  Google Scholar 

  • Praagman M et al (2006) The relationship between two different mechanical cost functions and muscle oxygen consumption. J Biomech 39(4):758–765

    Article  Google Scholar 

  • Rajagopal A et al (2015) Full body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans Biomed Eng 63(10):2068–2079. https://doi.org/10.1109/TBME.2016.2586891

  • Ranz EC et al (2017) The influence of limb alignment and transfemoral amputation technique on muscle capacity during gait. Comput Methods Biomech Biomed Engin 20(11):1167–1174

    Article  Google Scholar 

  • Richards C, Higginson JS (2010) Knee contact force in subjects with symmetrical OA grades: differences between OA severities. J Biomech 43(13):2595–2600

    Article  Google Scholar 

  • Robinson JL, Smidt GL, Arora JS (1977) Accelerographic, temporal, and distance gait factors in below-knee amputees. Phys Ther 57(8):898–904

    Article  Google Scholar 

  • Sanderson DJ, Martin PE (1997) Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking. Gait Posture 6:126–136

    Article  Google Scholar 

  • Sartori M et al (2017) Toward modeling locomotion using electromyography-informed 3D models: application to cerebral palsy. Wiley Interdiscip Rev Syst Biol Med 9(2):e1368

    Article  Google Scholar 

  • Scheys L, Spaepen A et al (2008a) Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait Posture 28(4):640–648

    Article  Google Scholar 

  • Scheys L, Van Campenhout A et al (2008b) Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths. Gait Posture 28(3):358–365

    Article  Google Scholar 

  • Scheys L et al (2009) Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study. J Biomech 42(5):565–572

    Article  Google Scholar 

  • Scheys L et al (2011) Level of subject-specific detail in musculoskeletal models affects hip moment arm length calculation during gait in pediatric subjects with increased femoral anteversion. J Biomech 44(7):1346–1353

    Article  Google Scholar 

  • Schwartz M, Lakin G (2003) The effect of tibial torsion on the dynamic function of the soleus during gait. Gait Posture 17(2):113–118

    Article  Google Scholar 

  • Shandiz MA et al (2013) A robotic model of Transfemoral amputee locomotion for design optimization of knee controllers. Int J Adv Robot Syst 10(3):161

    Article  Google Scholar 

  • Shippen JM, May B (2010) Calculation of muscle loading and joint contact forces during the rock step in Irish dance. J Dance Med Sci 14:11–18

    Google Scholar 

  • Shojaei I et al (2016) Persons with unilateral transfemoral amputation experience larger spinal loads during level-ground walking compared to able-bodied individuals. Clin Biomech 32:157–163

    Article  Google Scholar 

  • Silverman AK, Neptune RR (2012) Muscle and prosthesis contributions to amputee walking mechanics: a modeling study. J Biomech 45(13):2271–2278

    Article  Google Scholar 

  • Silverman AK, Neptune RR (2014) Three-dimensional knee joint contact forces during walking in unilateral transtibial amputees. J Biomech 47(11):2556–2562

    Article  Google Scholar 

  • Smith CR et al (2016) The influence of component alignment and ligament properties on Tibiofemoral contact forces in Total knee replacement. J Biomech Eng 138(c):1–10

    Google Scholar 

  • Spears IR et al (2000) Interfacial conditions between a press-fit acetabular cup and bone during daily activities: implications for achieving bone in-growth. J Biomech 33:1471–1477

    Article  Google Scholar 

  • Speirs AD et al (2007) Physiologically based boundary conditions in finite element modelling. J Biomech 40(10):2318–2323

    Article  Google Scholar 

  • Stansfield BW, Nicol AC (2002) Hip joint contact forces in normal subjects and subjects with total hip prostheses: walking and stair and ramp negotiation. Clin Biomech 17(2):130–139

    Article  Google Scholar 

  • Stansfield BW et al (2003) Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb. J Biomech 36(7):929–936

    Article  Google Scholar 

  • Steele KM et al (2010) Muscle contributions to support and progression during single-limb stance in crouch gait. J Biomech 43(11):2099–2105

    Article  Google Scholar 

  • Steele KM, Demers MS et al (2012a) Compressive tibiofemoral force during crouch gait. Gait Posture 35(4):556–560

    Article  Google Scholar 

  • Steele KM, van der Krogt MM et al (2012b) How much muscle strength is required to walk in a crouch gait? J Biomech 45(15):2564–2569

    Article  Google Scholar 

  • Steele KM et al (2013) Muscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait. Gait Posture 38(1):86–91

    Article  Google Scholar 

  • Steele KM, Rozumalski A, Schwartz MH (2015) Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy. Dev Med Child Neurol 57(12):1176–1182

    Article  Google Scholar 

  • Stops A, Wilcox R, Jin Z (2012) Computational modelling of the natural hip: a review of finite element and multibody simulations. Comput Methods Biomech Biomed Engin 15(9):963–979

    Article  Google Scholar 

  • Suzuki Y (2010) Dynamic optimization of transfemoral prosthesis during swing phase with residual limb model. Prosthetics Orthot Int 34(4):428–438

    Article  Google Scholar 

  • Szwedowski TD et al (2012) Generic rules of mechano-regulation combined with subject specific loading conditions can explain bone adaptation after THA. PLoS One 7(5):e36231

    Article  Google Scholar 

  • Taylor WR et al (2004) Tibio-femoral loading during human gait and stair climbing. J Orthop Res 22(3):625–632

    Article  Google Scholar 

  • Thelen DG, Anderson FC, Delp SL (2003) Generating dynamic simulations of movement using computed muscle control. J Biomech 36(3):321–328

    Article  Google Scholar 

  • Tsai CS, Mansour JM (1986) Swing phase simulation and design of above knee prostheses. J Biomech Eng 108(1):65–72

    Article  Google Scholar 

  • Vahdati A et al (2014) Role of subject-specific musculoskeletal loading on the prediction of bone density distribution in the proximal femur. J Mech Behav Biomed Mater 30:244–252

    Article  Google Scholar 

  • Valente G, Taddei F, Jonkers I (2013) Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis. J Biomech 46(13):2186–2193

    Article  Google Scholar 

  • Valente G et al (2014) Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? PLoS One 9(11):e112625

    Article  Google Scholar 

  • Van Der Krogt MM et al (2010) Dynamic spasticity of plantar flexor muscles in cerebral palsy gait. J Rehabil Med 42(7):656–663

    Article  Google Scholar 

  • van der Krogt MM, Delp SL, Schwartz MH (2012) How robust is human gait to muscle weakness? Gait Posture 36(1):113–119

    Article  Google Scholar 

  • van der Krogt MM et al (2016) Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy. J Neuroeng Rehabil 13(1):64

    Article  Google Scholar 

  • Voinescu M et al (2012) Estimation of the forces generated by the thigh muscles for transtibial amputee gait. J Biomech 45(6):972–977

    Article  Google Scholar 

  • Wagner DW et al (2013) Consistency among musculoskeletal models: caveat utilitor. Ann Biomed Eng 41(8):1787–1799

    Article  Google Scholar 

  • Waters RL et al (1976) Energy cost of walking of amputees: the influence of level of amputation. J Bone Joint Surg Am 58(1):42–46

    Article  Google Scholar 

  • Wesseling M, De Groote F, Jonkers I (2014) The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait. J Biomech 47:596–601

    Article  Google Scholar 

  • Wesseling M, de Groote F et al (2015a) Gait alterations can reduce the risk of edge loading. J Orthop Res 34(6):1069–1076

    Article  Google Scholar 

  • Wesseling M, de Groote F et al (2015b) Gait alterations to effectively reduce hip contact forces. J Orthop Res 33(7):1094–1102

    Article  Google Scholar 

  • Wesseling M, Derikx LC et al (2015c) Muscle optimization techniques impact the magnitude of calculated hip joint contact forces. J Orthop Res 33(3):430–438

    Article  Google Scholar 

  • Wesseling M, Meyer C et al (2016a) Does surgical approach or prosthesis type affect hip joint loading one year after surgery? Gait Posture 44:74–82

    Article  Google Scholar 

  • Wesseling M, De Groote F, Bosmans L et al (2016b) Subject-specific geometrical detail rather than cost function formulation affects hip loading calculation. Comput Methods Biomech Biomed Engin 19(14):1475–1488

    Article  Google Scholar 

  • Wesseling M, De Groote F, Meyer C et al (2016c) Subject-specific musculoskeletal modelling in patients before and after total hip arthroplasty. Comput Methods Biomech Biomed Engin 19(15):1683–1691

    Article  Google Scholar 

  • Wilson W et al (2005) A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J Biomech 38(6):1195–1204

    Article  Google Scholar 

  • Worsley P, Stokes M, Taylor M (2011) Predicted knee kinematics and kinetics during functional activities using motion capture and musculoskeletal modelling in healthy older people. Gait Posture 33(2):268–273

    Article  Google Scholar 

  • Worsley P et al (2013) Joint loading asymmetries in knee replacement patients observed both pre- and six months post-operation. Clin Biomech 28(8):892–897

    Article  Google Scholar 

  • Yoder AJ, Petrella AJ, Silverman AK (2015) Trunk–pelvis motion, joint loads, and muscle forces during walking with a transtibial amputation. Gait Posture 41(3):757–762

    Article  Google Scholar 

  • Yokota H, Leong DJ, Sun HB (2011) Mechanical loading: bone remodeling and cartilage maintenance. Curr Osteoporos Rep 9(4):237–242

    Article  Google Scholar 

  • Zajac FE, Neptune RR, Kautz SA (2002) Biomechanics and muscle coordination of human walking: part I: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16(3):215–232

    Article  Google Scholar 

  • Zajac FE, Neptune RR, Kautz SA (2003) Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications. Gait Posture 17(1):1–17

    Article  Google Scholar 

  • Zeni JA, Higginson JS (2009) Differences in gait parameters between healthy subjects and persons with moderate and severe knee osteoarthritis: a result of altered walking speed? Clin Biomech 24(4):372–378

    Article  Google Scholar 

  • Zhang J et al (2014) An anatomical region-based statistical shape model of the human femur. Comp Meth Biomech Biomed Eng: Imaging Vis 2(3):176–185

    Google Scholar 

  • Zhao D et al (2007) Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J Orthop Res 26(6):789–797

    Article  Google Scholar 

  • Zmitrewicz RJ, Neptune RR, Sasaki K (2007) Mechanical energetic contributions from individual muscles and elastic prosthetic feet during symmetric unilateral transtibial amputee walking: a theoretical study. J Biomech 40(8):1824–1831

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilse Jonkers .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wesseling, M., Ranz, E.C., Jonkers, I. (2018). Objectifying Treatment Outcomes Using Musculoskeletal Modelling-Based Simulations of Motion. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30808-1

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics