Skip to main content

Imaging Cancer Angiogenesis and Metastasis in a Zebrafish Embryo Model

  • Chapter
  • First Online:
Cancer and Zebrafish

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 916))

Abstract

Tumor angiogenesis and metastasis are key steps of cancer progression. In vitro and animal model studies have contributed to partially elucidating the mechanisms involved in these processes and in developing therapies. Besides the improvements in fundamental research and the optimization of therapeutic regimes, cancer still remains a major health threatening condition and therefore the development of new models is needed. The zebrafish is a powerful tool to study tumor angiogenesis and metastasis, because it allows the visualization of fluorescently labelled tumor cells inducing vessel remodeling, disseminating and invading surrounding tissues in a whole transparent embryo. The embryo model has also been used to address the contribution of the tumor stroma in sustaining tumor angiogenesis and spreading. Simultaneously, new anti-angiogenic drugs and compounds affecting malignant cell survival and migration can be tested by simply adding the compound into the water of living embryos. Therefore the zebrafish model offers the opportunity to gain more knowledge on cancer angiogenesis and metastasis in vivo with the final aim of providing new translational insights into therapeutic approaches to help patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  2. Amatruda JF, Shepard JL, Stern HM et al (2002) Zebrafish as a cancer model system. Cancer Cell 1(3):229–231

    Article  CAS  PubMed  Google Scholar 

  3. Amatruda JF, Patton EE (2008) Genetic models of cancer in zebrafish. Int Rev Cell Mol Biol 271:1–34

    Article  CAS  PubMed  Google Scholar 

  4. Lam SH, Wu YL, Vega VB et al (2006) Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24(1):73–75

    Article  CAS  PubMed  Google Scholar 

  5. Mizgireuv IV, Revskoy SY (2006) Transplantable tumor lines generated in clonal zebrafish. Cancer Res 66(6):3120–3125

    Article  CAS  PubMed  Google Scholar 

  6. Spitsbergen JM, Tsai HW, Reddy A et al (2000) Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicol Pathol 28(5):705–715

    Article  CAS  PubMed  Google Scholar 

  7. Spitsbergen JM, Tsai HW, Reddy A et al (2000) Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N′-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol Pathol 28(5):716–725

    Article  CAS  PubMed  Google Scholar 

  8. Neumann JC, Dovey JS, Chandler GL et al (2009) Identification of a heritable model of testicular germ cell tumor in the zebrafish. Zebrafish 6(4):319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Langenau DM, Traver D, Ferrando AA et al (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science 299(5608):887–890

    Article  CAS  PubMed  Google Scholar 

  10. Langenau DM, Keefe MD, Storer NY et al (2007) Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 21(11):1382–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park SW, Davison JM, Rhee J et al (2008) Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. Gastroenterology 134(7):2080–2090

    Article  PubMed  PubMed Central  Google Scholar 

  12. Santoriello C, Deflorian G, Pezzimenti F et al (2009) Expression of H-RASV12 in a zebrafish model of Costello syndrome causes cellular senescence in adult proliferating cells. Dis Model Mech 2(1-2):56–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. White RM, Sessa A, Burke C et al (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Konantz M, Balci TB, Hartwig UF et al (2012) Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 1266:124–137

    Article  PubMed  Google Scholar 

  15. Lam SH, Chua HL, Gong Z et al (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28(1):9–28

    Article  CAS  PubMed  Google Scholar 

  16. Jo DH, Son D, Na Y et al (2013) Orthotopic transplantation of retinoblastoma cells into vitreous cavity of zebrafish for screening of anticancer drugs. Mol Cancer 12

    Google Scholar 

  17. Eden CJ, Ju B, Murugesan M et al (2014) Orthotopic models of pediatric brain tumors in zebrafish. Oncogene

    Google Scholar 

  18. Tang Q, Abdelfattah NS, Blackburn JS et al (2014) Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods 11(8):821–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tenente IM, Tang Q, Moore JC et al (2014) Normal and malignant muscle cell transplantation into immune compromised adult zebrafish. J Vis Exp 94

    Google Scholar 

  20. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  CAS  PubMed  Google Scholar 

  21. Gacche RN, Meshram RJ (2014) Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta 1846(1):161–179

    CAS  PubMed  Google Scholar 

  22. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676

    Article  CAS  PubMed  Google Scholar 

  23. Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilkinson RN, van Eeden FJM (2014) The zebrafish as a model of vascular development and disease. Prog Mol Biol Transl Sci 124:93–122

    Article  CAS  PubMed  Google Scholar 

  25. Caduff JH, Fischer LC, Burri PH (1986) Scanning electron-microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec 216(2):154–164

    Article  CAS  PubMed  Google Scholar 

  26. Burri PH, Tarek MR (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228(1):35–45

    Article  CAS  PubMed  Google Scholar 

  27. Hlushchuk R, Makanya AN, Djonov V (2011) Escape mechanisms after antiangiogenic treatment, or why are the tumors growing again? Int J Dev Biol 55(4-5):563–567

    Article  CAS  PubMed  Google Scholar 

  28. Germain S, Monnot C, Muller L et al (2010) Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding. Curr Opin Hematol 17(3):245–251

    CAS  PubMed  Google Scholar 

  29. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8(12):967–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goswami S, Sahai E, Wyckoff JB et al (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65(12):5278–5283

    Article  CAS  PubMed  Google Scholar 

  31. Wyckoff JB, Wang Y, Lin EY et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67(6):2649–2656

    Article  CAS  PubMed  Google Scholar 

  32. Zervantonakis IK, Hughes-Alford SK, Charest JL et al (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109(34):13515–13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fein MR, Egeblad M (2013) Caught in the act: revealing the metastatic process by live imaging. Dis Model Mech 6(3):580–593

    Article  PubMed  PubMed Central  Google Scholar 

  34. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  35. Staton CA, Reed MW, Brown NJ (2009) A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 90(3):195–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vogel HB, Berry RG (1975) Chorioallantoic membrane heterotransplantation of human brain tumors. Int J Cancer 15(3):401–408

    Article  CAS  PubMed  Google Scholar 

  37. Ribatti D (2014) The chick embryo chorioallantoic membrane as a model for tumor biology. Exp Cell Res 328(2):314–324

    Article  CAS  PubMed  Google Scholar 

  38. Verheul HM, Pinedo HM (2007) Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 7(6):475–485

    Article  CAS  PubMed  Google Scholar 

  39. Estanqueiro M, Amaral MH, Conceicao J et al (2015) Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces 126:631–648

    Article  CAS  PubMed  Google Scholar 

  40. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248(2):307–318

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Pan L, Moens CB et al (2014) Notch3 establishes brain vascular integrity by regulating pericyte number. Development 141(2):307–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Traver D, Paw BH, Poss KD et al (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4(12):1238–1246

    Article  CAS  PubMed  Google Scholar 

  43. Renshaw SA, Loynes CA, Trushell DM et al (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108(13):3976–3978

    Article  CAS  PubMed  Google Scholar 

  44. Ellett F, Pase L, Hayman JW et al (2011) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117(4):e49–e56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nicoli S, Presta M (2007) The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2(11):2918–2923

    Article  CAS  PubMed  Google Scholar 

  46. Nicoli S, Ribatti D, Cotelli F et al (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67(7):2927–2931

    Article  CAS  PubMed  Google Scholar 

  47. Nicoli S, De Sena G, Presta M (2009) Fibroblast growth factor 2-induced angiogenesis in zebrafish: the zebrafish yolk membrane (ZFYM) angiogenesis assay. J Cell Mol Med 13(8B):2061–2068

    Article  PubMed  Google Scholar 

  48. Zhao C, Wang X, Zhao Y et al (2011) A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS One 6(7), e21768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van der Ent W, Jochemsen AG, Teunisse AF et al (2014) Ewing sarcoma inhibition by disruption of EWSR1-FLI1 transcriptional activity and reactivation of p53. J Pathol 233(4):415–424

    Article  PubMed  Google Scholar 

  50. Vitale G, Gaudenzi G, Dicitore A et al (2014) Zebrafish as an innovative model for neuroendocrine tumors. Endocr Relat Cancer 21(1):R67–R83

    Article  CAS  PubMed  Google Scholar 

  51. Haldi M, Ton C, Seng WL et al (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9(3):139–151

    Article  PubMed  Google Scholar 

  52. Lee SL, Rouhi P, Dahl Jensen L et al (2009) Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci U S A 106(46):19485–19490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tobia C, Gariano G, De Sena G et al (2013) Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk. Biochim Biophys Acta 1832(9):1371–1377

    Article  CAS  PubMed  Google Scholar 

  54. He S, Lamers GE, Beenakker JW et al (2012) Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol 227(4):431–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu Q, Deng S, Li L et al (2013) Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models. Nanoscale 5(24):12480–12493

    Article  CAS  PubMed  Google Scholar 

  56. Wu Q, Li G, Deng S et al (2014) Enhanced antitumor activity and mechanism of biodegradable polymeric micelles-encapsulated chetomin in both transgenic zebrafish and mouse models. Nanoscale 6(20):11940–11952

    Article  CAS  PubMed  Google Scholar 

  57. Harfouche R, Basu S, Soni S et al (2009) Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis 12(4):325–338

    Article  CAS  PubMed  Google Scholar 

  58. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  59. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63(3):131–135

    Article  CAS  PubMed  Google Scholar 

  60. Brambilla D, Luciani P, Leroux JC (2014) Breakthrough discoveries in drug delivery technologies: the next 30 years. J Control Release 190:9–14

    Article  CAS  PubMed  Google Scholar 

  61. Stoletov K, Kato H, Zardouzian E et al (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123(Pt 13):2332–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stoletov K, Montel V, Lester RD et al (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci U S A 104(44):17406–17411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wells A, Chao YL, Grahovac J et al (2011) Epithelial and mesenchymal phenotypic switchings modulate cell motility in metastasis. Front Biosci (Landmark Ed) 16:815–837

    Article  CAS  Google Scholar 

  64. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829

    Article  CAS  PubMed  Google Scholar 

  65. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11(2):123–134

    Article  CAS  PubMed  Google Scholar 

  67. Weinberg RA (2007) The biology of cancer. Garland Science, New York

    Google Scholar 

  68. Comen E, Norton L, Massague J (2011) Clinical implications of cancer self-seeding. Nat Rev Clin Oncol 8(6):369–377

    PubMed  Google Scholar 

  69. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101

    CAS  PubMed  Google Scholar 

  70. Vandercappellen J, Van Damme J, Struyf S (2008) The role of CXC chemokines and their receptors in cancer. Cancer Lett 267(2):226–244

    Article  CAS  PubMed  Google Scholar 

  71. Vella LJ (2014) The emerging role of exosomes in epithelial-mesenchymal-transition in cancer. Front Oncol 4:361

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ritsma L, Steller EJA, Beerling E et al (2012) Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Sci Transl Med 4(158)

    Google Scholar 

  73. Zhou ZN, Boimel PJ, Segall JE (2011) Tumor-stroma: in vivo assays and intravital imaging to study cell migration and metastasis. Drug Discov Today Dis Models 8(2-3):95–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kienast Y, von Baumgarten L, Fuhrmann M et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122

    Article  CAS  PubMed  Google Scholar 

  75. Wagner WW Jr (1969) Pulmonary microcirculatory observations in vivo under physiological conditions. J Appl Physiol 26(3):375–377

    PubMed  Google Scholar 

  76. Tanaka K, Morimoto Y, Toiyama Y et al (2012) In vivo time-course imaging of tumor angiogenesis in colorectal liver metastases in the same living mice using two-photon laser scanning microscopy. J Oncol 2012:265487

    Article  PubMed  PubMed Central  Google Scholar 

  77. Qian BZ, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Klemm F, Joyce JA (2015) Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 25:198–213

    Article  PubMed  Google Scholar 

  79. Ghotra VP, He S, de Bont H et al (2012) Automated whole animal bio-imaging assay for human cancer dissemination. PLoS One 7(2), e31281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ghotra VP, He S, van der Horst G et al (2015) SYK is a candidate kinase target for the treatment of advanced prostate cancer. Cancer Res 75(1):230–240

    Article  CAS  PubMed  Google Scholar 

  81. Ban J, Aryee DN, Fourtouna A et al (2014) Suppression of deacetylase SIRT1 mediates tumor-suppressive NOTCH response and offers a novel treatment option in metastatic Ewing sarcoma. Cancer Res 74(22):6578–6588

    Article  CAS  PubMed  Google Scholar 

  82. van der Ent W, Burrello C, Teunisse AF et al (2014) Modeling of human uveal melanoma in zebrafish xenograft embryos. Invest Ophthalmol Vis Sci 55(10):6612–6622

    Article  PubMed  Google Scholar 

  83. Chapman A, Fernandez del Ama L, Ferguson J et al (2014) Heterogeneous tumor subpopulations cooperate to drive invasion. Cell Rep 8(3):688–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bansal N, Davis S, Tereshchenko I et al (2014) Enrichment of human prostate cancer cells with tumor initiating properties in mouse and zebrafish xenografts by differential adhesion. Prostate 74(2):187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang XJ, Cui W, Gu A et al (2013) A novel zebrafish xenotransplantation model for study of glioma stem cell invasion. PLoS One 8(4), e61801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rampazzo E, Persano L, Pistollato F et al (2013) Wnt activation promotes neuronal differentiation of glioblastoma. Cell Death Dis 4, e500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kitambi SS, Toledo EM, Usoskin D et al (2014) Vulnerability of glioblastoma cells to catastrophic vacuolization and death induced by a small molecule. Cell 157(2):313–328

    Article  CAS  PubMed  Google Scholar 

  88. Drabsch Y, He S, Zhang L et al (2013) Transforming growth factor-beta signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res 15(6):R106

    Article  PubMed  PubMed Central  Google Scholar 

  89. Naber HP, Drabsch Y, Snaar-Jagalska BE et al (2013) Snail and Slug, key regulators of TGF-beta-induced EMT, are sufficient for the induction of single-cell invasion. Biochem Biophys Res Commun 435(1):58–63

    Article  CAS  PubMed  Google Scholar 

  90. Chen AT, Zon LI (2009) Zebrafish blood stem cells. J Cell Biochem 108(1):35–42

    Article  CAS  PubMed  Google Scholar 

  91. Wang J, Cao Z, Zhang XM et al (2015) Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res 75(2):306–315

    Article  CAS  PubMed  Google Scholar 

  92. Feng Y, Santoriello C, Mione M et al (2010) Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol 8(12), e1000562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Feng Y, Renshaw S, Martin P (2012) Live imaging of tumor initiation in zebrafish larvae reveals a trophic role for leukocyte-derived PGE(2). Curr Biol 22(13):1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Deng Q, Yoo SK, Cavnar PJ et al (2011) Dual roles for Rac2 in neutrophil motility and active retention in zebrafish hematopoietic tissue. Dev Cell 21(4):735–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Freisinger CM, Huttenlocher A (2014) Live imaging and gene expression analysis in zebrafish identifies a link between neutrophils and epithelial to mesenchymal transition. PLoS One 9(11), e112183

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jin SW, Beis D, Mitchell T et al (2005) Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132(23):5199–5209

    Article  CAS  PubMed  Google Scholar 

  97. Wang Y, Kaiser MS, Larson JD et al (2010) Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137(18):3119–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank A.H. Meijer for scientific discussion and P.M. Elks for critical reading of the chapter. The work was supported by the Netherlands Organization for Scientific Research (TOP GO Grant: 854.10.012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Snaar-Jagalska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tulotta, C. et al. (2016). Imaging Cancer Angiogenesis and Metastasis in a Zebrafish Embryo Model. In: Langenau, D. (eds) Cancer and Zebrafish. Advances in Experimental Medicine and Biology, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-319-30654-4_11

Download citation

Publish with us

Policies and ethics