Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 185))

Abstract

This paper presents the numerically modeled multiphase flow of a splash phenomenon generated by a wheel traveling at relatively low speeds through shallow water depths. The flow of interest is complex and involves effects of free surface dynamics and formation of large-scale droplets. The framework used to model the process is Eulerian, Large Eddy Simulation (LES) and incompressible fluid flow. Topological changes of the interface between the gaseous and liquid phase are predicted by using Volume of Fluid (VOF) method. OpenFOAM, the open source based library-kit, has been used for the flow simulations. The main responsible mechanism for the splash is considered to be the hydraulic jump generated by the tire pressing onto the free surface of the water. In association to this hypothesis the performance of 2 models, linear and parabolic, for the velocity distribution has been conveyed and compared with experimental data of splash-related contamination on a fixed plate. It is found that the parabolic velocity distribution agrees closer to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Alam, G. Irons, G. Brooks, A. Fontana, J. Naser, Inclined jetting and splashing in electric arc furnace steelmaking, in ISIJ International, vol. 51 (2011) pp. 1439–1447

    Google Scholar 

  2. J. Solórzano-López, R. Zenit, M.A. Ramírez-Argáez, Mathematical and physical simulation of the interaction between a gas jet and a liquid free surface. Appl. Math. Model. 35, 4991–5005 (2011)

    Google Scholar 

  3. K. Myrillas, A. Gosset, P. Rambaud, M. Anderhuber, J.-M. Mataigne, J.-M. Buchlin, Technique for delaying splashing in jet wiping process. Chem. Eng. Process. 50, 466–470 (2011)

    Article  Google Scholar 

  4. K. Myrillas, A. Gosset, P. Rambaud, M. Anderhuber, J.-M. Mataigne, J.-M. Buchlin, Cfd simulation of gas-jet wiping process. Eur. Phys. J. Spec. Top. 166, 93–97 (2009)

    Google Scholar 

  5. A. Labergue, M. Gradeck, F. Lemoine, Comparative study of the cooling of a hot temperature surface using sprays and liquid jets. Int. J. Heat Mass Transf. 81, 889–900 (2014)

    Article  Google Scholar 

  6. P.J. Kreitzer, J.M. Kuhlman, Monte-carlo spray cooling model, in AIP Conference Proceedings, vol. 1208 (2010) pp. 84–98

    Google Scholar 

  7. A. Mähönen, M. Kuusisto, U. Lindqvist, R. Nyrhilä, The splashing of ink drops in cij printing, in Proceedings of IS & T \(13{th}\) International Conference on Digital Printing Techniques (1997) pp. 600–603

    Google Scholar 

  8. N. Persson, Spray drying in cyclone separators (Chalmers University of Technology, 2014)

    Google Scholar 

  9. C. Gorla, F. Concli, K. Stahl, B.-R. Höhn, M. Klaus, H. Schultheiß, J.-P. Stemplinger, Cfd simulations of splash losses of a gearbox. Adv. Tribol. (2012)

    Google Scholar 

  10. C. Gorla, F. Concli, K. Stahl, B.-R. Höhn, K. Michaelis, H. Schultheiß, J.-P. Stemplinger, Hydraulic losses of a gearbox. Tribol. Int. 66, 337–344 (2013)

    Article  Google Scholar 

  11. M.P. Manser, R. Koppa, P. Mousley, Evaluation of splash and spray suppression devices on large trucks during wet weather. Technical Report, AAA Foundation for Traffic Safety (2003). http://www.aafoundation.org/

  12. G.B. Pilkington, Splash and spray: surface characteristics of roadways. Int. Res. Technol. ASTM STP 528–541, 1990 (1031)

    Google Scholar 

  13. J.S. Paschkewitz, Simulation of spray dispersion in a simplified heavy vehicle wake Technical Report, Energy and Environment Directorate, LLNL Heavy Vehicle Aerodynamics Project (2006)

    Google Scholar 

  14. J.S. Paschkewitz, A computational study of tandem dual wheel aerodynamics and the effect of fenders and fairings on spray dispersion. Technical Report, Energy and Environment Directorate, LLNL Heavy Vehicle Aerodynamics Project (2006)

    Google Scholar 

  15. H. Viner, A. Dunford, F. Coyle, K. Nesnas, Development of a prediction model for splash and spray, in 7th Symposium on Pavement Surface Characteristics: SURF 2012 (2012) pp. 1–16

    Google Scholar 

  16. S. Popinet, S. Zaleski, A front tracking algorithm for the accurate representation of surface tension. Int. J. Numer. Methods Fluids 30, 775–793 (1999)

    Article  MATH  Google Scholar 

  17. P. Trontin, S. Vincent, J.L. Estivalezes, J.P. Caltagirone, Detailed comparisons of front-capturing methods for turbulent two-phase flow simulations. Int. J. Numer. Methods Fluids 56, 1543–1549 (2008)

    Article  MATH  Google Scholar 

  18. S. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25–37 (1992)

    Article  MATH  Google Scholar 

  19. B. Maury, O. Pironneau, Characteristics ALE method for the unsteady 3D navier-stokes equations with a free surface. Int. J. Comput. Fluid Dyn. 6, 175–188 (1996)

    Article  Google Scholar 

  20. F. Pochet, K. Hillewaert, P. Geuzaine, J.-F. Remacle, E. Marchandise, A 3D strongly coupled implicit discontinuous Galerkin level set-based method for modeling two-phase flows. Comput. Fluids 87, 144–155 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Wilcox, Turbulence Modeling for CFD (DWC Industries, La Cãnada, California, 2006)

    Google Scholar 

  22. P. Sagaut, Large eddy simulation for incompressible flows: An introduction, 3rd edn. (Springer, Berlin, 2006)

    MATH  Google Scholar 

  23. C. Fureby, Towards the use of large eddy simulation in engineering. Prog. Aerosp. Sci. (2008)

    Google Scholar 

  24. H. Chanson, Development of the belanger equation and backwater equation by J.-B. Belanger (1828). J. Hydraul. Eng. ASCE, 159–163 (2009)

    Google Scholar 

  25. S. Vincent, A. Sarthou, J.-P. Caltagirone, F. Sonilhac, P. Février, C. Mignot, G. Pianet, Augmented lagrangian and penalty methods for the simulation of two-phase flows interacting with moving solids. application to hydroplaning flows interacting with real tire tread patterns. J. Comput. Phys. 230, 956–983 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.R. Cho, H.W. Lee, J.S. Sohn, G.J. Kim, J.S. Woo, Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire. Eur. J. Mech. A Solids 25, 914–926 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Cesur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Moroianu, D., Cesur, A. (2016). Tire Water Splash Modeling. In: Segalini, A. (eds) Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015). Springer Proceedings in Physics, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-319-30602-5_63

Download citation

Publish with us

Policies and ethics