Skip to main content

Catalytic Processes for Environmentally Friendly Methylene Diphenyl Diisocyanate Production

  • Chapter
  • First Online:
Chemistry Beyond Chlorine

Abstract

Isocyanates are industrially produced using strong mineral acids (e.g. HCl), in the condensation of aniline to produce methylenedianiline (MDA), and phosgene, in the conversion of MDA to the corresponding isocyanates. Huge quantities of sodium chloride, contaminated with organic compounds, are produced during process, and their disposal is a relevant issue.

New processes during the last 20 years have been studied in order to avoid the use of both HCl and phosgene obtaining the production of methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI), completely chlorine-free.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) (1937) Verfahren zur Herstellung von Polyurethanes bzw. Polyharnstoffen. DE Patent 728,981 13 Nov 1937; (b) Bayer O (1947) Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane). Angew Chem 59:257–272

    Google Scholar 

  2. Thomson T (2004) Polyurethanes as specialty chemicals: principles and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Woods G (1990) The ICI polyurethanes book, 2nd edn. Wiley, New-York

    Google Scholar 

  4. Plastics – the Facts (2012) Plastics Europe, http://www.plasticseurope.org/Document/plastics-the-facts-2012.aspx. Accessed on 25 Nov 2012

  5. Ulrich H (2001) The chemistry of isocyanates. Wiley, Chichester

    Google Scholar 

  6. Plöchl J (1888) Über eine Reaction des Formaldehyds. Berichte 21:2177–2179

    Google Scholar 

  7. Tian J, An H, Cheng X, Zhao X, Wang Y (2015) Synthesis of 4,4′-methylenedianiline catalyzed by SO3H-functionalized Ionic Liquids. Ind Eng Chem Res 54:7571–7579

    Article  CAS  Google Scholar 

  8. Wegener G, Brandt M, Duda L, Hofmann J, Klesczewski B, Koch D, Kumpf R-J, Orzesek H, Pirkl H-G, Six C, Steinlein C, Weisbeck M (2001) Trends in industrial catalysis in the polyurethane industry. Appl Catal A: Gen 221:303–335

    Article  CAS  Google Scholar 

  9. Marquis ET, Watts LW (1977) Method of preparing polyaminopolyphenylmethanes. US Patent 4,052,456, 4 Oct 1977

    Google Scholar 

  10. Marquis ET, Watts LW (1977) Barium nitride catalysts for the preparation of diamino-diphenylmethane. US Patent 4,053,513, 11 Oct 1977

    Google Scholar 

  11. 11 Marquis ET, Watts LW, Gipson RM (1981) Tungsten catalyzed aniline-formaldehyde condensation. US Patent 4,284,815, 18 Aug 1981

    Google Scholar 

  12. Marquis ET, Watts LW (1981) Method of preparing polyaminopolyphenylmethane. US Patent 4,284,816, 18 Aug 1981

    Google Scholar 

  13. Marquis ET, Gipson RM, Watts LW (1981) Molybdenum catalyst for aniline-formaldehyde condensation. US Patent 4,287,364, 1 Sept 1981

    Google Scholar 

  14. King DL, Cooper MD, Faber MA (1987) Acid catalyzed processes. WO Patent 87/06244, 22 Oct 1987

    Google Scholar 

  15. Candu N, Ciobanu M, Filip P, El Haskouri J, Guillem C, Amoros P, Beltran D, Coman SM, Parvulescu VI (2012) Efficient Sc triflate mesoporous-based catalysts for the synthesis of 4,4′-methylendianiline from aniline and 4-aminobenzylalcohol. J Catal 287:76–85

    Article  CAS  Google Scholar 

  16. Marquis ET, Watts LW (1977) Method for preparing polyaminopolyphenylmethanes. US Patent 4,041,078, 9 Aug 1977

    Google Scholar 

  17. Yee AWG (1971) Verfahren zur Herstelklung aromatische Polyamine. DE Patent 2,037,550, 11 Feb 1971

    Google Scholar 

  18. Neumann R, Schwarz H-H, Heuser J (1979) Verfaher zur Herstellung von Polyaminen der Diphenylmethanreihe. DE Patent 2,736,862, 1 Mar 1979

    Google Scholar 

  19. Merger F, Nestler G (1981) Verfahren zur Herstellung von Polyaminogemischen mit einem hohen Anteil an 4,4′-Diaminodiphenilmethan. EP 43,933, 19 Jun 1981.

    Google Scholar 

  20. Nafziger JL, Rader LA, Seward IJ Jr (1985) Process for preparing polyamines with ion exchange resin catalysts. US Patent 4,554,378, 19 Nov 1985

    Google Scholar 

  21. Saischek G, Fuchs F, Stern G (1983) Verfahren zur Herstellung von Diaminen der Diphenylmethanreihe. DE Patent 3,142,529, 5 May 1983

    Google Scholar 

  22. Bentley FE (1966) Verfahren zur Herstellung von Polyaminen. DE Patent 1,230,033, 8 Dec 1966

    Google Scholar 

  23. Bentley FE (1978) Aromatic polyamines and their preparation. US Patent 4,071,558, 31 Jan 1978

    Google Scholar 

  24. Bentley FE (1968) Mixtures of methylene-bridged polyphenyl polyisocyanates. US Patent 3,362,979, 9 Jan 1968

    Google Scholar 

  25. Bentley FE (1972) Herstellung des 4,4′-Isomeren von Diaminodiphenylmethan. DE Patent 2,202,500, 10 Aug 1972

    Google Scholar 

  26. Ziemek P, Raue R, Buysch H-J (1974) Verfahren zur Herstellung von Diaminodiarylmethanen. DE Patent 2,308,014, 22 Aug 1974

    Google Scholar 

  27. Marquis ET (1976) Preparation of methylene-bridged polyphenylpolyamine mixtures. US Patent 3,971,829, 27 Jul 1976

    Google Scholar 

  28. Marquis ET, Schulze H (1979) Treatment of methylene-bridged polyphenylpolyamine mixtures. US Patent 4,172,847, 30 Oct 1979

    Google Scholar 

  29. Perego C, de Angelis A, Farias O, Bosetti A (2002) Process for the production of diamino diphenyl methane and higher homologues. BE Patent 1,013,456, 22 Feb 2002

    Google Scholar 

  30. Perego C, de Angelis A, Carati A, Flego C, Millini R, Rizzo C, Bellussi G (2006) Amorphous aluminosilicate catalysts for hydroxyalkylation of aniline and phenol. Appl Catal A: Gen 307:128–136

    Article  CAS  Google Scholar 

  31. Frulla FF, Sayigh AAR, Ulrich H, Whitman PJ (1977) Process for preparing di(aminophenyl)methanes. US Patent 4,039,580, 2 Aug 1977

    Google Scholar 

  32. Frulla FF, Sayigh AAR, Ulrich H, Whitman PJ (1977) Process for preparing di(aminophenyl)methanes. US Patent 4,039,581, 2 Aug 1977

    Google Scholar 

  33. Frulla FF, Sayigh AAR, Ulrich H, Whitman PJ (1978) Polymethane polyphenyl polyisocyanate. US Patent 4,092,343, 30 May 1978

    Google Scholar 

  34. Prather RA, Shah NN (1981) Process for preparing methylene dianilines. US Patent 4,294,987, 13 Oct 1981

    Google Scholar 

  35. Bahulayan D, Sukumar R, Raghavanpillai Sabu K, Lalithambika M (1999) An easy synthesis of 4,4′-di-aminodiphenylmethanes on natural kaolinites. Green Chem 1999:191–193

    Article  Google Scholar 

  36. Kiso Y, Takai T, Hayashi T (1989) Method of preparing 4,4-methylenedianiline. EP 329,367, 23 Aug 1989

    Google Scholar 

  37. Clerici MG, Bellussi G, Romano U (1988) Process for the preparation of 4,4′ diaminodiphenylmethane and its derivatives. EP 264,744, 27 Apr 1988

    Google Scholar 

  38. Perego C, de Angelis A, Farias O, Bosetti A (2002) Process for the production of diaminodiphenylmethane and its higher homologues. US Patent 6,380,433, 30 Apr 2002

    Google Scholar 

  39. Weitkamp J, Ernst S (1988) Probing the shape selective properties of zeolites by catalytic hydrocarbons reactions. Catal Today 3:451–468

    Article  CAS  Google Scholar 

  40. de Angelis A, Ingallina P, Perego C (2004) Solid acid catalysts for industrial condensations of ketones and aldehydes with aromatics. Ind Eng Chem Res 43:1169–1178

    Article  Google Scholar 

  41. Whitman PJ, Frulla FF, Temme GH, Steuber FA (1986) Protodealkylation of bis(aminophenyl)methanes. Tetrahedron Lett 27:1887–1890

    Article  CAS  Google Scholar 

  42. de Angelis A, Flego C, Farias O, Bosetti A (2002) Process for the synthesis of mixtures of methane diphenyl diamine and its higher homologues with a controlled isomer distribution. WO Patent 02/20458, 14 Mar 2002

    Google Scholar 

  43. O’Connor CT, Möller KP, Manstein H (2001) The effect of silanization on the catalytic and sorption properties of zeolites. Cattech 5–3:172–182

    Article  Google Scholar 

  44. Kugita T, Hirose S, Namba S (2006) Catalytic activity of zeolites for synthesis reaction of methylenedianiline from aniline and formaldehyde. Catal Today 111:275–279

    Article  CAS  Google Scholar 

  45. Salzinger M, Lercher JA (2011) Reaction network and mechanism of the synthesis of methylenedianiline over dealuminated Y-type zeolites. Green Chem 13:149–155

    Article  CAS  Google Scholar 

  46. Salzinger M, Fichtl MB, Lercher JA (2011) On the influence of pore geometry and acidity on the activity of parent and modified zeolites in the synthesis of methylenedianiline. Appl Catal A: Gen 393:189–194

    Article  CAS  Google Scholar 

  47. Corma A, Botella P, Mitchell C (2004) Replacing HCl by solid acids in industrial processes: synthesis of diamino diphenyl methane (DADPM) for producing polyurethanes. Chem Commun 2004:2008–2010

    Article  Google Scholar 

  48. Botella P, Corma A, Carr RH, Mitchel CJ (2011) Towards an industrial synthesis of diamino diphenyl methane (DADPM) using delaminated materials: a breakthrough step in the production of isocyanated for polyurethanes. Appl Catal A: Gen 398:143–149

    Article  CAS  Google Scholar 

  49. European Committee (2008) Annex I of regulation (EC) No. 1907/2006 (REACH)

    Google Scholar 

  50. (a) Tafesh AM, Weiguny J (1996) A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates and ureas using CO. Chem Rev 96:2035–2052; (b) Paul F (2000) Catalytic synthesis of isocyanates or carbamates from nitroaromatics using Group VIII transition metal catalysts. Coord Chem Rev 203:269–323; (c) Ragaini F (2009) Away from phosgene: reductive carbonylation of nitroarenes and oxidative carbonylation of amines understanding the mechanism to improve performance. Dalton Trans 32:6251–6266

    Google Scholar 

  51. Hardy WB, Bennett RP (1967) Direct conversion of aromatic nitro compounds to isocyanates by carbon monoxide. Tetrahedron Lett 11:961–962

    Article  Google Scholar 

  52. (a) Drent E, van Leeuwen PWNM, (1983) Preparation of carbamates using palladium-containing catalyst. EP 86,281, 24 Aug 1983; (b) Röper M (1988) Industrial applications of homogeneous catalysis, In: Reidel D (ed). Dordrecht, The Netherlands

    Google Scholar 

  53. (a) Cenini S, Crotti C (1991) Metal promoted selectivity in organic synthesis. Kluwer Academic Publishers, Dordrecht; (b) Cenini S, Ragaini F (1997) Catalytic reductive carbonylation of organic nitro compounds. Kluwer Academic Publishers, Dordrecht; (c) Kazi AB, Cundari TR, Baba E, DeYonker NJ, Dinescu A, Spaine L (2007) Catalytic synthesis of arylisocyanates from nitroaromatics. A computational study. Organometallics 26:910–914

    Google Scholar 

  54. (a) Cenini S, Pizzotti M, Crotti C. Porta F, La Monica G (1984) Selective ruthenium carbonyl catalysed reductive carbonylation of aromatic nitro compounds to carbamates. J Chem Soc Chem Commun 1286–1287; (b) Cenini S, Crotti C, Pizzotti M, Porta F (1988) Ruthenium carbonyl catalyzed reductive carbonylation of aromatic nitro compounds. A selective route to carbamates. J Org Chem 53:1243–1250; (c) Han S-H, and Geoffroy GL (1988) Halide promotion of the formation and carbonylation of μ3-imido ligands. Relevance to the halide promotion of nitroaromatic carbonylation catalysis. Polyhedron 7:2331–2339; (d) Cenini S, Pizzotti M, Crotti C, Ragaini F, Porta F (1988) Effects of neutral ligands in the reductive carbonylation of nitrobenzene catalysed by Ru3(CO)12 and Rh6(CO)16. J Mol Catal 49:59–69; (e) Han S-H, Song J-S, Macklin PD, Nguyen ST, Geoffroy GL, Rheingold AL (1989) Further studies of cluster-bound imido ligands. Imido-acyl coupling and promotion of the formation and carbonylation of imido ligands by halides. Organometallics 8:2127–2138

    Google Scholar 

  55. (a) Alessio E, Mestroni G (1984) Catalytic synthesis of aromatic urethanes from nitroaromatic compounds and carbon monoxide, using palladium 1,10-phenanthroline derivatives as catalyst precursors. J Mol Catal 26:337–340; (b) Alessio E, Mestroni G (1985) Catalytic reductive carbonylation of aromatic nitro compounds to urethanes promoted by supported palladium activated with 1,10-phenanthroline derivatives. J Organomet Chem 291:117–127; (c) Bontempi A, Alessio E, Chanos G, Mestroni G (1987) Reductive carbonylation of nitroaromatic compounds to urethanes catalyzed by [Pd(1,10-phenanthroline)2][PF6]2 and related complexes. J Mol Catal 42:67–80

    Google Scholar 

  56. (a) Ragaini F, Cenini S, Demartin F (1994) Mechanistic study of the carbonylation of nitrobenzene catalyzed by the [Rh(CO)4]-/nitrogen base system. X-ray structure of [cyclic] [PPN][Rh(CO)2ON(C6H3Cl2)C(O)O]. Organometallics 13:1178–1189; (b) Rode CV, Gupte SP, Chaudhari RV, Pirozhkov CV, Lapidus AL (1994) Activity and selectivity of supported Rh complex catalyst in carbonylation of nitrobenzene. J Mol Cat 91:195–206; (c) Tefesh AMA, Weiguny J (1996) Review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem Rev 96:2035–2052

    Google Scholar 

  57. (a) Delebecq E, Pascault J-P, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113:80–118; (b) Wang Y, Zhao X, Li F, Wang S, Zhang J (2001) Catalytic synthesis of toluene-2,4-diisocyanate from dimethyl carbonate. J Chem Technol Biotechnol 76:857–861

    Google Scholar 

  58. Grate JH, Hamm DR, Valentine DH (1986) Carbonylation process. WO 1986005179, 12 Sept 1986

    Google Scholar 

  59. Fukuoka S, Chono M, Kohno M (1984) A novel catalytic synthesis of carbamates by the oxidative alkoxycarbonylation of amines in the presence of platinum group metal and alkali metal halide or onium halide. J Org Chem 49:1458–1460

    Article  CAS  Google Scholar 

  60. Alper H, Hartstock FW (1985) An exceptionally mild, catalytic homogeneous method for the conversion of amines into carbamate esters. J Chem Soc Chem Commun 1985:1141–1142

    Google Scholar 

  61. (a) McGhee WD, Waldman T (1993) Process for preparing isocyanates. US Patent 5,189,205, 23 Feb 1993; (b) McGhee WD, Waldman T (1993) Preparation of urethane and carbonate products. US Patent 5,260,473, 9 Nov 1993; (c) McGhee WD, Waldman T (1994) Process for preparing isocyanates using phosphazine catalysts. US Patent 5,298,651, 29 Feb 1994

    Google Scholar 

  62. Leung TW, Dombek BD (1992) Oxidative carbonylation of amines catalysed by metallomacrocyclic compounds. J Chem Soc Chem Commun 1992:205–206

    Google Scholar 

  63. Jacob A, Wershofen S, Klein S, Sundermeyer J, Mei F (2009) Method for producing urethanes. WO Patent 2009/095164, 6 Aug 2009

    Google Scholar 

  64. Cassar L (1990) Dimethylcarbonate: a new intermediate for a cleaner future. La Chimica e L’Industria 1990:18–22

    Google Scholar 

  65. (a) Romano U, Rivetti F, Di Muzio N (1982) Process for producing dimethylcarbonate. US Patent 4,318,862, 9 Mar 1982; (b) Di Muzio N, Fusi C, Rivetti F, Sasselli G (1993) Process for producing dimethyl carbonate. US Patent 5,210,269, 11 May 1993

    Google Scholar 

  66. Bhanage BM, Fujita S, Ikushima Y, Torii K, Arai M (2003) Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides and methanol using heterogeneous Mg containing smectite catalysts: effect of reaction variables on activity and selectivity performance. Green Chem 5:71–75

    Article  CAS  Google Scholar 

  67. Ono Y (1997) Dimethyl carbonate for environmentally benign reactions. Catal Today 35:15–25

    Article  CAS  Google Scholar 

  68. Six C, Richter F (2003) Isocyanates, organic, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  69. Kreye O, Mutlu H, Meier MAR (2013) Sustainable routes to polyurethane precursors. Green Chem 15:1431–1455

    Article  CAS  Google Scholar 

  70. Hammen G, Knöfel H, Friederichs W (1994) Verfahren zur Herstellung von Polyisocyanaten. EP 396,977, 14 Nov 1990

    Google Scholar 

  71. Merger F, Towae F (1982) Thermal decomposition of aryl urethanes. US Patent 4,330,479, 18 May 1982

    Google Scholar 

  72. Gurgiolo AE (1981) Preparation of carbamates from aromatic amines and organic carbonates. EP 65,026, 24 Nov 1982

    Google Scholar 

  73. (a) Baba T, Kobayashi A, Yamauchi T, Tanaka H, Aso S, Inomata M, Kawanami Y (2002) Catalytic methoxycarbonylation of aromatic diamines with dimethyl carbonate to their dicarbamates using zinc acetate. Catal Lett 82:193–197; (b) Fu Z, Ono Y (1994) Synthesis of methyl N-phenyl carbamate by methoxycarbonylation of aniline with dimethyl carbonate using Pb compounds as catalysts. J Mol Catal 91:399–405

    Google Scholar 

  74. Ono Y (1996) Dimethyl carbonate for environmentally benign reactions. Pure Appl Chem 68:367–375

    Article  CAS  Google Scholar 

  75. (a) Harada K, Sugise R, Kashiwagi K, Matsuura T (2000) Process for producing aryl carbamates. US Patent 6,143,917, 7 Nov 2000; (b) Yamazaki N, Iguchi T, Higashi F (1979) The reaction of diphenyl carbonate with amines and its application to polymer synthesis. J Polym Sci Polym Chem 17:835–841

    Google Scholar 

  76. King WB, Lee JS (1999) A new process for the synthesis of diphenyl carbonate from dimethyl carbonate and phenol over heterogeneous catalysts. Catal Lett 59:83–88

    Article  Google Scholar 

  77. Pei Y, Li H, Liu H, Zhang Y (2009) A non-phosgene route for synthesis of methylene diphenyl dicarbamate from methylene dianiline and methyl carbamates. Catal Today 148:373–377

    Article  CAS  Google Scholar 

  78. Ze-Gang Q, Jun-Wei W, Mao-Qing K, Qi-Feng L, Hui D, Xin-Kui W (2007) Investigation of the by-products formed during the catalytic synthesis of 4,4′-methylenedimethyldiphenylcarbamate. Chin J Chem 25:888–891

    Article  Google Scholar 

  79. Guo X, Qin Z, Fan W, Wang G, Zhao R, Peng S, Wang W (2009) Zinc carboxylate functionalized mesoporous SBA-15 catalyst for selective synthesis of methyl-4,4′-di(phenylcarbamate). Catal Lett 128:405–412

    Article  CAS  Google Scholar 

  80. Reixach E, Bonet N, Rius-Ruiz FX, Wershofen S, Vidal-Ferran A (2010) Zinc acetates as efficient catalysts for the synthesis of bis-isocyanate precursors. Ind Eng Chem Res 49:6362–6366

    Article  CAS  Google Scholar 

  81. Zhao X, Wang Y, Wang S, Yang H, Zhang J (2002) Synthesis of MDI from dimethyl carbonate over solid catalysts. Ind Eng Chem Res 41:5139–5144

    Article  CAS  Google Scholar 

  82. (a) Bosetti A, Cesti P, Cauchi E, Prestifilippo I (1997) Process for the production of aromatic urethanes. US patent 5,688,988, 18 Nov 1997; (b) Bosetti A, Cesti P, Calderazzo F (1997) Process for the production of aromatic carbamates. US Patent 5,698,731, 16 Dec 1997

    Google Scholar 

  83. Bosetti A, Cauchi E, Carletti V, Cesti P (2000) Process for the synthesis of aromatic urethanes. US Patent 6,034,265, 7 Mar 2000

    Google Scholar 

  84. Cesti P, Bosetti A, Mizia F, Notari M, Ricci M, Rivetti F, Romano U (2001) Integrated process for the preparation of aromatic isocyanates and procedures for effecting the relative intermediate phases. WO Patent 0156977, 9 Aug 2001

    Google Scholar 

  85. Belforte A, Calderazzo F, Englert U, Straehle J (1991) Deoxygenation of carbon dioxide to diethylformamide in the zinc/diethylamine/carbon dioxide system. Crystal and molecular structure of hexakis(diethylcarbamato)oxotetrazinc. Inorg Chem 30:3778–3781

    Article  CAS  Google Scholar 

  86. Calderoni C, Mizia F, Rivetti F, Romano U (1992) Process for producing carbamates. US Patent 5,091,556, 25 Feb 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Perego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Angelis, A., Bosetti, A., Millini, R., Perego, C. (2016). Catalytic Processes for Environmentally Friendly Methylene Diphenyl Diisocyanate Production. In: Tundo, P., He, LN., Lokteva, E., Mota, C. (eds) Chemistry Beyond Chlorine. Springer, Cham. https://doi.org/10.1007/978-3-319-30073-3_5

Download citation

Publish with us

Policies and ethics