Skip to main content

Raman Scattering

  • Living reference work entry
  • First Online:
Handbook of Advanced Non-Destructive Evaluation
  • 275 Accesses

Abstract

Raman scattering is an inelastic light-scattering technique that finds wide application in physics, chemistry, geology, engineering, and life sciences. It is a nondestructive evaluation method that gives information on vibrational modes in sample materials and can thus be used for characterization of structure and composition of materials. This includes phase identification (study of polytypes and phase transitions), characterization of residual stress and strain, studies of nanomaterials, radiation damage, catalysis processes, corrosion mechanisms, oxide formation, metabolic process in biological tissues, and many more. Information is obtained at the micron scale in materials, and Raman mapping can be used to determine composition and stress/strain in materials at similar spatial scales. Advances in instrumentation over the past decade or so have made the technique more widely accessible, and a brief overview of dispersive Raman instrumentation is given. The description of the basics of the method focuses on solid materials, and applications focus on phase identification and NDE of stress and strain. The examples covered in more detail include stress determination in diamond and polycrystalline diamond (PCD) tools and in situ characterization of corrosion processes on iron surfaces. The chapter concludes with a short overview of other NDE applications, with citations of relevant literature, and method developments such as tip-enhanced Raman spectroscopy (TERS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adar F, Mamedov S, Whitley A (2010) Microsc Microanal 16:360–361

    Article  Google Scholar 

  • Ager JW, Drory D (1993) Phys Rev B 48:2601–2607

    Article  Google Scholar 

  • Ager JW, Veirs DK, Rosenblatt GM (1991) Phys Rev B 43:6491–6499

    Article  Google Scholar 

  • Anastassakis E, Pinczuk A, Burstein E, Pollak FH, Cardona M (1970) Solid State Commun 8:133–138

    Article  Google Scholar 

  • Austin LA, Osseiran S, Evans CL (2016) Analyst 141:476–503

    Article  Google Scholar 

  • Balkanski M, Wallis RF, Haro E (1983) Phys Rev B 28:1928–1934

    Article  Google Scholar 

  • Beechem T, Graham S, Kearney SP, Phinney LM, Serrano JR (2007) Rev Sci Instrum 78:061301

    Article  Google Scholar 

  • Bergman L, Nemanich RJ (1995) J Appl Phys 78:6709–6719

    Article  Google Scholar 

  • Boppart H, van Straaton J, Silvera IF (1985) Phys Rev B Rapid Commun 32:1423–1425

    Article  Google Scholar 

  • Borer WJ, Mitra SS, Namjoshi DV (1971) Solid State Commun 9:1377–1381

    Article  Google Scholar 

  • Boteler JM, Gupta YM (1993) Phys Rev Lett 71:3497–3500

    Article  Google Scholar 

  • Brookes CA (1992) In: Field JE (ed) The properties of natural and synthetic diamond. Academic, London, p 515

    Google Scholar 

  • Brookes CA, Brookes EJ, Howes VR, Roberts SG, Waddington CP (1990) J Hard Mater 1:3–24

    Google Scholar 

  • Brüesch P (1982) Phonons: theory and experiments I. Springer, New York

    Book  Google Scholar 

  • Brüesch P (1986) Phonons: theory and experiments II. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Burke EAJ (2001) Lithos 55:139–158

    Article  Google Scholar 

  • Campbell IH, Fauchet PM (1986) Solid State Commun 58:739–741

    Article  Google Scholar 

  • Cardona M (1982) In: Cardona M, Güntherodt G (eds) Light scattering in solids II (topics in applied physics 50). Springer, Berlin

    Chapter  Google Scholar 

  • Catledge SA, Vohra YK (1995) J Appl Phys 78:7053–7058

    Article  Google Scholar 

  • Catledge SA, Vohra YK, Ladi R, Rai G (1996) Diam Relat Mater 5:1159–1165

    Article  Google Scholar 

  • Cohen M (1978) In: Frakenthal RP, Kruger J (eds) Passivity of metals. The Electrochemical Society Inc, New Jersey, pp 521–545

    Google Scholar 

  • Colomban P (2002) Adv Eng Mater 4:535–542

    Article  Google Scholar 

  • Colomban P (2017) J Raman Spectrosc 2017:1–14

    Google Scholar 

  • Colomban P, Gouadec G, Mathez J, Tschiember J, Pérès P (2006) Compos Part A-Appl S 37:646–651

    Article  Google Scholar 

  • Crawford FS Jr (1968) Waves:Berkeley physics course, vol 3. McGraw-Hill, New York, p 376

    Google Scholar 

  • Cullity BD, Weymouth JW (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, New York

    Google Scholar 

  • Datchi F, Canny B (2004) Phys Rev B 69:144106

    Article  Google Scholar 

  • de la Vega A, Kinloch IA, Young RJ, Bauhofer W, Schulte K (2011) Compos Sci Technol 71:160–166

    Article  Google Scholar 

  • De Wolf I (1996) Semicond Sci Tech 11:139–154

    Article  Google Scholar 

  • De Wolf I (2003) Spectrosc Eur 15/2:6–13

    Google Scholar 

  • De Wolf I (2015) J Appl Phys 118:053101

    Article  Google Scholar 

  • De Wolf I, Anastassakis E (1999) J Appl Phys 85:7484–7485

    Article  Google Scholar 

  • De Wolf I, Maes HE, Jones SK (1996) J Appl Phys 79:7148–7156

    Article  Google Scholar 

  • Dooley KA, McCormack J, Fyhrie DP, Morris MD (2009) J Biomed Opt 14:044018

    Article  Google Scholar 

  • Edwards HGM, Vandenabeele P (2016) Philos T Roy Soc A 374:20160052

    Article  Google Scholar 

  • Erasmus RM, Comins JD, Fish ML (2000) Diam Relat Mater 9:600–604

    Article  Google Scholar 

  • Erasmus RM, Daniel RD, Comins JD (2011a) J Appl Phys 109:013527

    Article  Google Scholar 

  • Erasmus RM, Comins JD, Mofokeng V, Martin Z (2011b) Diam Relat Mater 20:907–911

    Article  Google Scholar 

  • Evans T, Davey ST, Robertson SH (1984) J Mater Sci 19:2405–2414

    Article  Google Scholar 

  • Everall N (2010) Analyst 135:2512–2522

    Article  Google Scholar 

  • Everall N (2014) J Raman Spectrosc 45:133–138

    Article  Google Scholar 

  • Ferreira NG, Abramof E, Corat EJ, Trava-Airoldi VJ (2003) Carbon 41:1301–1308

    Article  Google Scholar 

  • Field JE (1992) In: Field JE (ed) The properties of natural and synthetic diamond. Academic Press, London, p 667

    Google Scholar 

  • Foucher F, Ammar M-R, Westall F (2015) J Raman Spectrosc 46:873–879

    Article  Google Scholar 

  • Frezzotti ML, Tecce F, Casagli A (2012) J Geochem Explor 112:1–20

    Article  Google Scholar 

  • Ganesan S, Maradudin AA, Oitmaa J (1970) Ann Phys-New York 56:556–594

    Article  Google Scholar 

  • Gries T, Vandenbulcke L, Simon P, Canizares A (2007) J Appl Phys 102:083519

    Article  Google Scholar 

  • Griffith WP (1975) In: Karr C (ed) Infrared and Raman spectroscopy of lunar and terrestrial minerals. Academic Press, New York

    Google Scholar 

  • Grimsditch MH, Anastassakis E, Cardona M (1978) Phys Rev B 18:901–904

    Article  Google Scholar 

  • GuptaYM, Horn PD, Yoo CS (1989) Appl Phys Lett 55:33–35

    Article  Google Scholar 

  • Hanfland M, Syassen K, Fahy S, Louie SG, Cohen ML (1985) Phys Rev B 31:6896–6899 Rapid Comm

    Article  Google Scholar 

  • Harris TK, Brookes EJ, Daniel RD (2001) Diam Relat Mater 10:755–759

    Article  Google Scholar 

  • Hart TR, Aggarwal RL, Lax B (1970) Phys Rev B 1:638–642

    Article  Google Scholar 

  • Herchen H, Cappelli MA (1993) Phys Rev B 47:14193–14199

    Article  Google Scholar 

  • Hou PY, Ager J, Mougin J, Galerie A (2011) Oxid Met 75:229–245

    Article  Google Scholar 

  • Imanaka M, Ishikawa R, Sakurai Y, Ochi K (2009) J Mater Sci 44:976–984

    Article  Google Scholar 

  • Ishigaki M, Hashimoto K, Sato H, Ozaki Y (2017) Sci Rep-UK 7:43942

    Article  Google Scholar 

  • Jaumot J, Gargallo R, de Juan A, Tauler R (2005) Chemometr Intell Lab 76:101–110

    Article  Google Scholar 

  • Jothilakshmi R, Ramakrishnan V, Kumar J, Sarua A, Kuball M (2011) J Raman Spectrosc 42:422–428

    Article  Google Scholar 

  • Keresztury G (2002) In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, Theory and instrumentation, vol 1. Wiley, Chichester

    Google Scholar 

  • Kim JG, Yu J (1998) J Mater Res 13:3027–3033

    Article  Google Scholar 

  • Klein MV (1990) In: Horton GK, Maradudin AA (eds) Dynamical properties of solids. North-Holland, Amsterdam

    Google Scholar 

  • Korsakov AV, Toporski J, Dieing T, Yang J, Zelenovskiye PS (2015) J Raman Spectrosc 46:880–888

    Article  Google Scholar 

  • Lammer A (1988) Mater Sci Tech-Lond 4:949–955

    Article  Google Scholar 

  • Landsberg G, Mandelstam L (1928a) Naturwissenschaften 16:557–558

    Article  Google Scholar 

  • Landsberg G, Mandelstam L (1928b) Z Phys 50:769–780

    Article  Google Scholar 

  • Lee CJ, Pezzotti G, Okui Y, Nishino S (2004) Appl Surf Sci 228:10–16

    Article  Google Scholar 

  • Liu Z, Zhang J, Gao B (2009) Chem Commun 2009:6902–6918

    Article  Google Scholar 

  • Long DA (2002) The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Wiley, New York

    Book  Google Scholar 

  • Loudon R (1964) Adv Phys 13:423–482

    Article  Google Scholar 

  • Marcuse D (1980) Principles of quantum electronics. Academic, New York

    Google Scholar 

  • McNamara D, Alveen P, Damm S, Carolan D, Rice JH, Murphy N, Ivanković A (2015) Int J Refract Met H 52:114–122

    Article  Google Scholar 

  • Mermoux M, Marcus B, Crisci A, Tajani A, Gheeraert E, Bustarret E (2005) J Appl Phys 97:043530

    Article  Google Scholar 

  • Mitra SS, Brafman O, Daniels WB, Crawford RK (1969) Phys Rev 186:942–944

    Article  Google Scholar 

  • Mohiuddin TMG, Lombardo A, Nair RR, Bonetti A, Savini G, Jalil R, Bonini N, Basko DM, Galiotis C (2009) Phys Rev B 79:205433

    Article  Google Scholar 

  • Mohrbacher H, Van Acker K, Blanpain B, Van Houtte P, Celis J-P (1996) J Mater Res 11:1776–1782

    Article  Google Scholar 

  • Mossbrucker J, Grotjohn TA (1997) J Vac Sci Technol A 15:1206–1210

    Article  Google Scholar 

  • Muraki N, Katagiri G, Sergo V, Pezzotti G, Nishida T (1997) J Mater Sci 32:5419–5423

    Article  Google Scholar 

  • Nafie LA (2017) J Raman Spectrosc 48:1692–1717

    Article  Google Scholar 

  • Nemanich RJ, Solin SA, Martin RM (1981) Phys Rev B 23:6348–6356

    Article  Google Scholar 

  • Nieuwoudt MK, Comins JD, Cukrowski I (2011a) J Raman Spectrosc 42:1335–1339

    Article  Google Scholar 

  • Nieuwoudt MK, Comins JD, Cukrowski I (2011b) J Raman Spectrosc 42:1353–1365

    Article  Google Scholar 

  • Noguchi N, Abduriyim A, Shimizu I, Kamegata N, Odakea S, Kagia H (2013) J Raman Spectrosc 44:147–154

    Article  Google Scholar 

  • Nugent KW, Prawer S (1998) Diam Relat Mater 7:215–221

    Article  Google Scholar 

  • Odusote JK, Cornish LA, Chown LH, Erasmus RM (2013) Corros Sci 70:276–284

    Article  Google Scholar 

  • Panneerselvam R, Liu G-K, Wang Y-H, Liu J-Y, Ding S-Y, Li J-F, Wu D-Y, Tian Z-Q (2018) Chem Commun 54:10–25

    Article  Google Scholar 

  • Parsons BJ (1977) Proc R Soc Lon Ser-A 352:397–417

    Article  Google Scholar 

  • Pezzotti G (2007) Expert Rev Med Devic 4:165–189

    Article  Google Scholar 

  • Postmus C, Ferraro JR, Mitra SS (1968) Phys Rev 174:983–987

    Article  Google Scholar 

  • Rahaman M, Rodriguez RD, Plechinger G, Moras S, Schüller C, Korn T, Zahn DRT (2017) Nano Lett 17:6027–6033

    Article  Google Scholar 

  • Raman CV (1928) Indian J Phys 2:387–398

    Google Scholar 

  • Raman CV, Krishnan KS (1928) Nature 121:501–502

    Article  Google Scholar 

  • Richter H, Wang ZP, Ley L (1981) Solid State Commun 39:625–629

    Article  Google Scholar 

  • Roberts SG (1988) Philos Mag A 58:347–364

    Article  Google Scholar 

  • Sato N (1989) Corros Sci 31:1–19

    Article  Google Scholar 

  • Sato N (1997) Corros Sci 27:421–433

    Article  Google Scholar 

  • Sharma SK, Mao HK, Bell PM, Xu JA (1985) J Raman Spectrosc 16:350–352

    Article  Google Scholar 

  • Sherif E-SM, Erasmus RM, Comins JD (2010) Electrochim Acta 55:3657–3663

    Article  Google Scholar 

  • Srikar VT, Swan AK, Ãœnlü MS, Goldberg BB, Spearing SM (2003) J Microelectromech S 12:779–787

    Article  Google Scholar 

  • Stansbury EE, Buchanan RA (2000) Fundamentals of electrochemical corrosion, 1st edn. ASM International (Publishers), Ohio

    Google Scholar 

  • Starman LA Jr, Lott JA, Amer MS, Cowan WD, Busbee JD (2003) Sensors Actuat A-Phys 104:107–116

    Article  Google Scholar 

  • Tarun A, Hayazawa N, Kawata S (2009) Anal Bioanal Chem 394:1775–1785

    Article  Google Scholar 

  • Thorne AP (1988) Spectrophysics, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Uehara K, Yamaya S (1988) Int J Refract Met H 7:219–223

    Google Scholar 

  • Van Camp PE, Van Doren VE, Devreese JT (1992) Solid State Commun 84:731–733

    Article  Google Scholar 

  • Vhareta M, Erasmus RM, Comins JD (2014) Diam Relat Mater 45:34–42

    Article  Google Scholar 

  • Wei J, Wang A, Lambert JL, Wettergreen D, Cabrol N, Warren-Rhodes K, Zacny K (2015) J Raman Spectrosc 46:810–821

    Article  Google Scholar 

  • Whalley E, Lavergne A, Wong PTT (1976) Rev Sci Instrum 47:845–848

    Article  Google Scholar 

  • Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W (2009) Chem Phys Lett 472:1–13

    Article  Google Scholar 

  • Zakroczymski T, Fan C-J, Szklarska-Smialowska Z (1985) J Electrochem Soc 132:2868–2871

    Article  Google Scholar 

  • Zhao Q, Wagner HD (2004) Philos T Roy Soc A 362:2407–2424

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Research Foundation (NRF) of South Africa under Grant No 2053306, the DST-NRF Centre of Excellence in Strong Materials hosted by the University of the Witwatersrand, the University of the Witwatersrand, Johannesburg, and the African Laser Centre (ALC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Comins .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Erasmus, R.M., Comins, J.D. (2018). Raman Scattering. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Non-Destructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-30050-4_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30050-4_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30050-4

  • Online ISBN: 978-3-319-30050-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics