Skip to main content

Overview of the Sustainable Materials for Composites and Their Industrial Adaptability

  • Chapter
  • First Online:
Recent Developments in Braiding and Narrow Weaving
  • 883 Accesses

Abstract

Sustainability carries more weight in this century, boosting research and investigations on new environmentally sustainable materials. This paper summarizes some recent literature and developments on the topics of biopolymers, cellulosic fibers, biocomposites and at least their potential as engineering parts and state an overview of natural polymers and the utilization of natural fiber reinforcements to form biodegradable sustainable and on the long view competitive composites. Green Composites are finding adaptabilityin many fields including automotive industry, construction industry, sporting goods, or consumer products. Main types of bioplastics are listed, defined and considered according to their mechanical performance and market potential. Natural plant fibers are classified by origin, performance and potential for composites as well as compared to traditionally used glass fiber according to mechanical properties and environmental impact. Moreover, advantages of cellulose fibers for composites are listed and compared to their downgrades, with possible modification methods to partially compensate their disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Islam, B.R. Mills, 3D Woven Structures and Methods of Manufacture. Woven Textiles: Principles, Developments and Applications, pp. 267–273 (2012)

    Google Scholar 

  2. A.P. Mouritz, M.K. Bannister, Review of applications for advanced three-dimensional fibre textile composites. Compos. Part A 30, 1445–1461 (1999)

    Google Scholar 

  3. M. Milwich, Learning from nature: lightweight constructions using the Textiles plant stem. Polym. Compos. Build. 304 (2010)

    Google Scholar 

  4. S.T. Peters, Introduction, Composite Basics and Road Map. in Handbook of Composites, vol. 2 (1998)

    Google Scholar 

  5. C. Baley, Matrix polymers. flax and hemp fibres; a natural solution for the composite industry. JEC Compos. vol. 85 (2012)

    Google Scholar 

  6. K. Goda, M. Sreekala, S. Malhotra, Advances in polymer composites: biocomposites- state of the art, new challenges and opportunities. Polym. Compos. vol 3 Biocompos. 1–8 (2014)

    Google Scholar 

  7. A.K. Mohanty, M. Misra, L.T. Drza, Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 10, 19–26 (2002)

    Article  CAS  Google Scholar 

  8. P. Bordes, E. Pollet, Nano-biocomposites: Biodegradable polyester/nanoclaysystems. Prog. Polym. Sci. 34, 125–155 (2009)

    Article  CAS  Google Scholar 

  9. E.D. Maio, S. Iannace, Biodegradable Composites. Encycl. Compos. 1, 86 (2012)

    Google Scholar 

  10. W.S. Ratnayakea, R. Hoovera, Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chem. 74(2), 189–202 (2001)

    Article  Google Scholar 

  11. M. Thunwall, A. Boldizar, M. Rigdahl, Compression molding and tensile properties of thermoplastic potato starch materials. Biomacromolecules. pp. 981–986 (2006)

    Google Scholar 

  12. F.G. Torres, O.H. Arroyo, C. Gomez, Processing and mechanical properties of natural fiber reinforced thermoplastic starch biocomposites. J. Thermoplast. Compos. Mater. 20, 207–223 (2007)

    Article  CAS  Google Scholar 

  13. A. Vazquez, V.A. Alvarez, Starch- Cellulose Fiber Composite.in Biodegradable polymer Blends and Composites from renewable Resources, vol. 245 (2009)

    Google Scholar 

  14. A. Bergeret, Environment-friendly protein-/starch-based biodegradable polymers and composites. JEC Mag. vol. 39 (2008)

    Google Scholar 

  15. S. Ochi, Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin. Compos. Part A Appl. Sci. Manuf. 37, 7879–1883(2005)

    Google Scholar 

  16. X.S. Sun, Overview of plant polymers: resources, demands, and sustainability. Bio- Based Polym. Compos. 382–403 (2005)

    Google Scholar 

  17. V.M. Hernandez-Izquierdo, Thermoplastic, processing of proteins for film formation. J Food Sci 73, 30–39 (2008)

    Google Scholar 

  18. Y. Wang, G.W. Padua, Tensile properties of extruded zein sheets and extrusion blown films. Macromol. Mater. Eng. 288(11), 886–893 (2003)

    Article  CAS  Google Scholar 

  19. J.W. Pollack, Soy vs. petro polyols: A life cycle comparison, pp. 1–5 (2004)

    Google Scholar 

  20. J.P. Dwan’Isa, Mohanty A.K. Misra, Biobased polyurethane and its composite with glass fiber. J. Mater. Sci. 39, 2081–2087 (2004)

    Article  Google Scholar 

  21. S. Husic, I. Javni, Thermal and mechanical properties of glass reinforced soybased polyurethane composites. Compos. Sci. Technol. 65, 19–25 (2005). science direct

    Article  CAS  Google Scholar 

  22. A. Skopinska-Wisniewskaa, Surface characterization of collagen/elastin based biomaterials for tissue regeneration. Appl. Surf. Sci. 255(19), 8286–8292 (2009)

    Google Scholar 

  23. P.B. Malafaya, G.A. Silva, Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Delivery Rev. 4–5(59), 207–233 (2007)

    Article  Google Scholar 

  24. U. Gruessner, M. Clemens, Improvement of perineal wound healing by local administration of gentamicin-impregnated collagen fleeces after abdominoperineal excision of rectal cancer. Am. J. Surg. 182(5), 502 (2001)

    Article  CAS  Google Scholar 

  25. C. Yang, M. Bodo, Recombinant collagen and gelatin for drug delivery. Adv. Drug Delivery Rev. 55(12), 1547 (2003)

    Article  Google Scholar 

  26. A.C. Albertson, K. VarmaI, Aliphatic Polyester: synthesis, properties, and applications. Adv. Polym. Sci. 2 (2002)

    Google Scholar 

  27. C. Jérôme, P. Lecomte, Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv. Drug Delivery Rev. 60(9), 1056–1076 (2008)

    Article  Google Scholar 

  28. A. Steinbruch, Polyester 3. Applications and commercial products 4. Biopolymers 338 (2002)

    Google Scholar 

  29. L.T. Lim, R. Auras, Processing technologies for poly (lactide acid) in process. Polym. sci. 33(8), 820–852 (2008)

    Google Scholar 

  30. A.B. Nair, P. Sivasubramanian, P. Balakrishnan, Environmental effects biodegradation, and life cycle analysis of fully biodegradable “green” composites. Polym. Compos. Biocompos. 515–534 (2012)

    Google Scholar 

  31. S.R. Lee, H.M. Park, Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites Polymer 43, 2495–2500 (2002)

    Google Scholar 

  32. M, Tolinski, Plastic and sustainability, pp 204–110 (2012)

    Google Scholar 

  33. J. Sierra, M. Noriega, E. Cardona, Relationship between properties, citrate content and postproduction time for a plasticized Polylactic acid. in ANTEC 2010 Society of Plastic Engineers (2010)

    Google Scholar 

  34. M. Tolinski, Plastic and sustainability, pp. 107–110 (2012)

    Google Scholar 

  35. S. Medeiros, A.S.F. Santos, A. Dufresne, Bionanocomposites. Polym. Compos. 3 Biocompos. 375 (2014)

    Google Scholar 

  36. E. DI Maio, S. Iannace, Biodegradable composites. Encycl. Compos. 1, 88 (2012)

    Google Scholar 

  37. http://www.bio-based.eu/market_study/media/files/13-07-24PRMarketStudynova.pdf

  38. European bioplastics, Institut für Biokunststoffe und Bioverbundwerkstoffe (IFBB)

    Google Scholar 

  39. European Bioplastics, Institute for Bioplastics and Biocomposites, nova-Institute (2015)

    Google Scholar 

  40. http://news.bio-based.eu/fast-growth-of-based-polymers-production/#_ftn1

  41. E. Bodros, C. Baley, Study of the tensile properties of stinging nettle fibres (Urtica dioica). Mater. Lett. 62(14), 2143–2145 (2008)

    Article  Google Scholar 

  42. A. Bismarmarck, S. Mishra, Plant Fibers as Reinforcement for Green Composites. in Natural Fibers, Biopolymers and Biocomposites (2005)

    Google Scholar 

  43. K. Charlet, Natural Fibres as Composite Reinforcement Materials, Description of new source of vegetable Fibers, in Natural Polymers Volume 1: Composites (RSC Publishing, UK, 2012) pp. 48–57

    Google Scholar 

  44. P. Wambua, U. Ivens, I. Verpoest, Natural fibers: can they replace glass in fiber reinforced plastics. Compos. Sci. Technol. 63, 1259–1264 (2003)

    Article  CAS  Google Scholar 

  45. S.V. Joshi, L.T. Drzal, A.K. Mohnty, Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A 35, 371–376 (2004)

    Google Scholar 

  46. R.M. Rowell, Properties and Performance of Natural-Fibre Composites; Natural Fibres, types and properties. pp. 4–36 (2008)

    Google Scholar 

  47. F.G. Torres, Processing and mechanical properties of natural fiber reinforced thermoplastic starch biocomposites. J. Thermoplast. Compos. Mater. 20(2), 207–223 (2007)

    Article  CAS  Google Scholar 

  48. I.C. Madufor, M.E. Yibowei, Physico-Mechanical Properties of Luffa aegyptiaca Fiber Reinforced Polymer Matrix Composite, vol. 1 (2015)

    Google Scholar 

  49. M. Carus, A. Eder, L. Scholz, BIOVERBUNDWERKSTOFFE Naturfaserverstärkte Kunststoffe (NFK) und Holz-Polymer-Werkstoffe (WPC), Fachagentur Nachwachsende Rohstoffe e. V. (FNR) (2015)

    Google Scholar 

  50. P. Gaikwad, P. Mahanwar, Surface treated and untreated henequen fiber reinforced polypropylene composites. Int. J. Chem. Environ. Biol. Sci. (IJCEBS) 2(4) (2014)

    Google Scholar 

  51. H. Hajiha, M. Sain, The use of sugarcane bagasse fibres as reinforcements in composites. in Biofiber Reinforcements in Composite Materials ed by O. Faruk, M. Sain (Woodhead Publishing, UK, 2015) pp. 525–547

    Google Scholar 

  52. Zaker Bahreini, Evaluation of calotropis gigantea as a promising raw material for fiber-reinforced composite. J. Compos. Mater. June 2009. 43(11), 1297–1304

    Google Scholar 

  53. L. Garzon, L.M. Lopez, J. Fajardo: New Natural Fiber: Toquilla Straw a Potential Reinforcement in Thermoplastic Polymer Composites. in Conference: ICMS 2014, http://icams.ro/index.php, vol. 5. Available on research gate (2014)

  54. R. Mahjoub, J. Bin Mohamad Yatim, A review of structural performance of oil palm empty fruit bunch fiber in polymer composites. Adv. Mater. Sci. Eng. 2013 (2013)

    Google Scholar 

  55. M. Zimniewska, J. Mankowski, Cellulosic Bast Fibers, Their Structures and Properties Suitable for Composite Applications. in Cellulose Fibers: Bio-and Nano- Polymer Composites, pp. 108–112 (2011)

    Google Scholar 

  56. A.K. Mohanty, M. Misra, L.T. Drzal, Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos. Interfaces 8, 313–343 (2001)

    Article  CAS  Google Scholar 

  57. G.T. Pott, Reduction of Moisture Sensitivity in Natural Fibres. in Advanced Fibers, Plastics, Laminates and Composites, pp. 87–98 (2002)

    Google Scholar 

  58. J.M. Jacob, T. Sabu, Biofibres and biocomposites. Carbohydr. Polym. 71 (2008), p. 344. www.sciencedirect.com (2007)

  59. A. Vazquez, V.A. Alvarez, Starch-Cellulose Fiber Composites. in Biodegradable Polymer Blends and Composites From Renewable Resources, vol. 250 (2009)

    Google Scholar 

  60. M.S. Sreekala, M.G. Kumaran, Effect of chemical modifications on the mechanical performance of oil palm fiber reinforced phenol formaldehyde composites. Nat. polym. compos. (2000)

    Google Scholar 

  61. A.K. Bledzki, A.A. Mamun, A. Jaszkiewicz, K. Erdmann, Polypropylene composites with enzyme modified abaca fibre. Compos. Sci. Technol. 70, 854–860 (2010)

    Article  CAS  Google Scholar 

  62. G.K. Satyanarayana, G. Arizaga, F. Wypych, Biodegradable composites based on lignocellulosic fibers: An overview. Progress Polym. Sci. 34, 997 (2009)

    Article  Google Scholar 

  63. C. Baley, A.L. Duigou Eco-design, life cycle analysis and recycling. Flax and Hemp fibres: a natural solution for the composite industry. JEC Compos. 174 (2012)

    Google Scholar 

  64. Popular Mechanics Magazine. in Auto Body Made of Plastics Resists Denting Under Hard Blows. 76(6) (1941)

    Google Scholar 

  65. http://indiacompositesshow.com/bio-composites-in-automotive-applications/

  66. http://news.panasonic.net/archives/2014/0227_26252.htm

  67. http://fribourgnetwork.ch/fnf2014-online-eng/files/assets/basic-html/page41.html

  68. http://www.toyota-boshoku.com/global/about/development/eco/kenaf/

  69. http://www.brigit-project.eu/detalle_noticia.php?no_id=2757

  70. http://www.ecotechnilin.com/products.asp

  71. P. Malnati, ECO Elise Concept: Lean, Speedy and Green. http://www.compositesworld.com/articles/eco-elise-concept-lean-speedy-and-green (2009)

  72. http://www.uid.umu.se/en/uid-14/projects/td/erik-melldahl/

  73. J.M. Yatim, A.R.M. Sam, Construct Build Mater 55, 103–113 (2014)

    Article  Google Scholar 

  74. http://www.e-architect.co.uk/copenhagen/louisiana-pavilion

  75. http://trends.archiexpo.com/inspiration/facades-from-decoration-to-innovation/

  76. http://www.itke.uni-stuttgart.de/entwicklung.php?lang=en&id=58

  77. http://lingrove.com/applications-2/

  78. http://www.bcomp.ch/66-0-low-twist-light-fabrics.html

  79. http://www.flaxland.co.uk/fabric%20boats.html)

  80. http://www.playnaturallysmart.org/2014/05/20/composites-busch-set-up-new-benchmarks-in-ice-hockey-thanks-to-flax/

  81. http://www.waffenkoffer-winter.de/en/pistol-cases/pistol-case-natural-fibers.php

  82. http://www.enviroarc.net/products.php

  83. http://www.nec.co.jp/press/en/0603/2001.html

  84. www.japanfs.org/en/news/archives/news_id025426.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taraneh Khademi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khademi, T. (2016). Overview of the Sustainable Materials for Composites and Their Industrial Adaptability. In: Kyosev, Y. (eds) Recent Developments in Braiding and Narrow Weaving. Springer, Cham. https://doi.org/10.1007/978-3-319-29932-7_16

Download citation

Publish with us

Policies and ethics