Skip to main content

Sonoelectrochemical Production of Fuel Cell Nanomaterials

  • Chapter
  • First Online:
Nanomaterials for Fuel Cell Catalysis

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter highlights the use of sonoelectrochemistry for the synthesis of fuel cell nanomaterials which is currently an emerging research area. The chapter also focuses on recent studies of sonoelectrochemical production of noble metals and electrocatalysts for Proton Exchange Membrane Fuel Cells, Solid Oxide Fuel Cells and other Fuel Cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sammes N (ed) (2006) Fuel cell technology: reaching towards commercialization. Springer, London

    Google Scholar 

  2. Blomen LJMJ, Mugerwa MN (1993) Fuel cell systems. Plenum Press, New York

    Book  Google Scholar 

  3. Mench MM (2008) Fuel cell engines. Wiley, London

    Book  Google Scholar 

  4. O’Hayre R, Colella W, Cha S-W, Prinz FB (2009) Fuel cell fundamentals. Wiley, London

    Google Scholar 

  5. Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, London

    Google Scholar 

  6. Pollet BG (ed) (2012) Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution. Wiley, Chichester

    Google Scholar 

  7. Mason TJ, Lorimer JP (1998) Sonochemistry, theory, applications and uses of ultrasound in chemistry. Ellis Horwood, Chichester

    Google Scholar 

  8. Thorneycroft J, Barnaby SW (1895) Torpedo-boat destroyers. Inst Civ Eng 122

    Google Scholar 

  9. Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 34(199-04):94–98

    Article  Google Scholar 

  10. Richards WT, Loomis AL (1927) Chemical effects of high frequency sound waves I. A preliminary survey. J Am Chem Soc 49:3086–3100

    Article  CAS  Google Scholar 

  11. Pollet BG (1998) The effect of ultrasound upon electrochemical processes. Dissertation, Coventry University, England, UK

    Google Scholar 

  12. Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc B 63:674

    Article  Google Scholar 

  13. Pollet BG, Hihn J-Y, Doche M-L, Lorimer JP, Mandroyan A, Mason TJ (2007) Transport limited currents close to an ultrasonic horn equivalent flow velocity determination. J Electrochem Soc 154:E131–E138

    Article  CAS  Google Scholar 

  14. Moriguchi N (1934) The influence of supersonic waves on chemical phenomena. III. The influence on the concentration polarisation. J Chem Soc Jpn 55:749–750

    CAS  Google Scholar 

  15. Schmid G, Ehret L (1937) Beeinflussung der Metallpassivität durch Ultraschall. Z Elektrochem 43:408–415

    CAS  Google Scholar 

  16. Schmid G, Ehret L (1937) Beeinflussung der Elektrolytischen Abscheidungspotentiale von Gasen durch Ultraschall. Z Elektrochem 43:597–608

    CAS  Google Scholar 

  17. Kolb J, Nyborg W (1956) Small‐scale acoustic streaming in liquids. J Acoust Soc Am 28:1237–1242

    Article  Google Scholar 

  18. Penn R, Yager E, Hovorka F (1959) Effect of ultrasonic waves on concentration gradients. J Acoust Soc Am 31:1372

    Article  Google Scholar 

  19. Bard A (1965) High speed controlled potential coulometry. Anal Chem 35:1125–1128

    Article  Google Scholar 

  20. Mason TJ, Lorimer JP, Walton DJ (1990) Sonoelectrochemistry. Ultrasonics 28:333–337

    Article  CAS  Google Scholar 

  21. Shen Q, Jiang L, Zhang H, Min Q, Hou W, Zhu J-J (2008) Three-dimensional dendritic Pt nanostructures: sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C 112:16385–16392

    Article  CAS  Google Scholar 

  22. Zin V, Pollet BG, Dabalá M (2009) Sonoelectrochemical (20 kHz) production of platinum nanoparticles from aqueous solutions. Electrochim Acta 54:7201–7206

    Article  CAS  Google Scholar 

  23. Shen Q, Min Q, Shi J, Jiang L, Zhang J-R, Hou W, Zhu J-J (2009) Morphology-controlled synthesis of palladium nanostructures by sonoelectrochemical method and their application in direct alcohol oxidation. J Phys Chem C 113:1267–1273

    Article  CAS  Google Scholar 

  24. Qiu X-F, Xu J-Z, Zhu J-M, Zhu J-J, Xu S, Chen HY (2003) Controllable synthesis of palladium nanoparticles via a simple sonoelectrochemical method. J Mater Res 18:1399–1404

    Article  CAS  Google Scholar 

  25. Steele BCH (1999) Fuel cell technology: running on natural gas. Nature 400:619–620

    Article  CAS  Google Scholar 

  26. Bessler WG, Vogler M, Störmer H, Gerthsen D, Utz A, Weber A, Ivers-Tiffée E (2010) Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells. Phys Chem Chem Phys 12:13888–13903

    Article  CAS  Google Scholar 

  27. Park S, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404:265–267

    Article  CAS  Google Scholar 

  28. Trovarelli A (1996) Catalytic properties of ceria and ceria-containing materials. Catal Rev Sci Eng 38:439–520

    Article  CAS  Google Scholar 

  29. Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review—I.Performance-determining factors. J Solid State Electrochem 12:1039–1060

    Article  CAS  Google Scholar 

  30. Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam

    Google Scholar 

  31. Ford DC, Nilekar AU, Xu Y, Mavrikakis M (2010) Partial and complete reduction of O2 by hydrogen on transition metal surfaces. Surf Sci 604:1565

    Article  CAS  Google Scholar 

  32. Peng G, Mavrikakis M (2015) Adsorbate diffusion on transition metal nanoparticles. Nano Lett 15:629

    Article  CAS  Google Scholar 

  33. Presvytes D, Vayenas CG (2007) Mathematical modeling of the operation of SOFC Nickel-cermet anodes. Ionics 13:9–18

    Article  CAS  Google Scholar 

  34. Qu NS, Zhu D, Chan KC (2006) Fabrication of Ni–CeO2 nanocomposite by electrodeposition. Scr Mater 54:1421–1425

    Article  CAS  Google Scholar 

  35. Faes A, Hessler-Wyser A, Presvytes D, Vayenas CG, Van herle J (2009) Nickel-zirconia anode degradation and triple phase boundary quantification from microstructural analysis. Fuel Cells 9:841–851

    Article  CAS  Google Scholar 

  36. Gong M, Liu X, Trembly J, Johnson C (2007) Sulfur-tolerant anode materials for solid oxide fuel cell application. J Power Sources 168:289–298

    Article  CAS  Google Scholar 

  37. Mark Ormerod R (2003) Solid oxide fuel cells. Chem Soc Rev 32:17–28

    Article  Google Scholar 

  38. Brandon NP, Skinner S, Steele BCH (2003) Recent advances in materials for fuel cells. Annu Rev Mater Res 33:183–213

    Article  CAS  Google Scholar 

  39. Tao S, John Irvine JTS (2004) Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3-δ in relation to its potential as a solid oxide fuel cell anode material. Chem Mater 16:4116–4121

    Article  CAS  Google Scholar 

  40. Myung J-H, Ko H-J, Lee J-J, Lee J-H, Hyun S-H (2012) Synthesis and characterization of NiO/GDC-GDC dual nano-composite powders for high performance methane fueled solid oxide fuel cells. Int J Hydrogen Energy 37:11351–11359

    Article  CAS  Google Scholar 

  41. Gavrielatos I, Drakopoulos V, Neophytides SG (2008) Carbon tolerant Ni-Au SOFC electrodes operating under internal steam reforming conditions. J Catal 259:75–84

    Article  CAS  Google Scholar 

  42. Bebelis S, Neophytides SG, Kotsionopoulos N, Triantafyllopoulos N, Colomer MT, Jurado J (2006) Methane oxidation on composite ruthenium electrodes in YSZ cells. Solid State Ion 177:2087–2091

    Article  CAS  Google Scholar 

  43. Tao S, Irvine JTS (2004) Synthesis and Characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a Redox-Stable, Efficient Perovskite Anode for SOFCs. J Electrochem Soc 151:A252

    Article  CAS  Google Scholar 

  44. Nikolla E, Schwank J, Linic S (2009) Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: the impact of the formation of Ni alloy on chemistry. J Catal 263:220–227

    Article  CAS  Google Scholar 

  45. Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2006) H2S poisoning of solid oxide fuel cells. J Electrochem Soc 153:A2023–A2029

    Article  CAS  Google Scholar 

  46. Matsuzaki Y, Yasuda I (2000) The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration. Solid State Ion 132:261–269

    Article  CAS  Google Scholar 

  47. Trembly JP, Marquez AI, Ohrn TR, Bayless DJ (2006) Effects of coal syngas and H2S on the performance of solid oxide fuel cells: single-cell tests. J Power Sources 158:263–273

    Article  CAS  Google Scholar 

  48. Liu M, Wei G, Luo J, Sanger AR, Chuang KT (2003) Use of metal sulfides as anode catalysts in H2S-Air SOFCs. J Electrochem Soc 150:A1025–A1029

    Article  CAS  Google Scholar 

  49. Hahn K, Mavrikakis M (2014) Atomic and molecular adsorption on Re(0001). Top Catal 57:54

    Article  CAS  Google Scholar 

  50. McEvoy AJ, Smith MJ (2007) Regeneration of anodes exposed to sulfur. ECS Trans 7:373–380

    Article  Google Scholar 

  51. Yentekakis IV, Vayenas CG (1989) Chemical cogeneration in solid electrolyte cells. The oxidation of formula to formula. J Electrochem Soc 136:996–1002

    Article  CAS  Google Scholar 

  52. Nilekar AU, Sasaki K, Farberow CA, Adzic RR, Mavrikakis M (2011) Mixed-metal Pt monolayer electrocatalysts with improved CO tolerance. J Am Chem Soc 133:18574

    Article  CAS  Google Scholar 

  53. Wei GL, Liu M, Luo JL, Sanger AR, Chuang KT (2003) Influence of gas flow rate on performance of H2S/air solid oxide fuel cells with MoS2­NiS­Ag anode. J Electrochem Soc 150:A463–A469

    Article  CAS  Google Scholar 

  54. Reisse J, Caulier T, Deckerkheer C, Fabre O, Vandercamrnen J, Delplancke JL, Winand R (1996) Quantitative sonochemistry. Ultrason Sonochem 3:147–151

    Article  Google Scholar 

  55. Sáez V, Mason TJ (2009) Review—sonoelectrochemical synthesis of nanoparticles. Molecules 14:4284–4299

    Article  Google Scholar 

  56. González-García J, Esclapez MD, Bonete P, Hernández YV, Garretón LG, Sáez V (2010) Current topics on sonoelectrochemistry. Ultrasonics 50:318–322

    Article  Google Scholar 

  57. Pollet BG (2010) The use of ultrasound for the fabrication of fuel cell materials. Int J Hydrogen Energy 35:11986–12004

    Article  CAS  Google Scholar 

  58. Compton RG, Eklund JC, Marken F, Rebbitt TO, Akkermans RP, Waller DN (1997) Dual activation: coupling ultrasound to electrochemistry—an overview. Electrochim Acta 42:2919–2927

    Article  CAS  Google Scholar 

  59. Delplancke J-L, Di Bella V, Reisse J, Winand R (1994) Production of metal nanopowders by sonoelectrochemistry. MRS Proc 372:75

    Article  Google Scholar 

  60. Davis J, Vaughan DH, Stirling D, Nei L, Compton RG (2002) Cathodic stripping voltammetry of nickel: sonoelectrochemical exploitation of the Ni(III)/Ni(II) couple. Talanta 57:1045–1051

    Article  CAS  Google Scholar 

  61. Jia F, Hu Y, Tang Y, Zhang L (2007) A general nonaqueous sonoelectrochemical approach to nanoporous Zn and Ni particles. Powder Technol 176:130–136

    Article  CAS  Google Scholar 

  62. Liu Y-C, Lin L-H, Chiu W-H (2004) Size-controlled synthesis of gold nanoparticles from bulk gold substrates by sonoelectrochemical methods. J Phys Chem B 108:19237–19240

    Article  CAS  Google Scholar 

  63. Aqil A, Serwas H, Delplancke JL, Jérôme R, Jérôme C, Canet L (2008) Preparation of stable suspensions of gold nanoparticles in water by sonoelectrochemistry. Ultrason Chem 15:1055–1061

    CAS  Google Scholar 

  64. Shen Q, Min Q, Shi J, Jiang L, Hou W, Zhu J-J (2011) Synthesis of stabilizer-free gold nanoparticles by pulse sonoelectrochemical method. Ultrason Sonochem 18:231–237

    Article  CAS  Google Scholar 

  65. Sakkas P, Schneider O, Martens S, Thanou P, Sourkouni G, Argirusis C (2012) Fundamental studies of sonoelectrochemical nanomaterials preparation. J Appl Electrochem 42:763–777

    Article  CAS  Google Scholar 

  66. Rao CNR, Muller A, Cheetan AK (2008) The chemistry of nanomaterials synthesis, properties and applications, vol 1. Wiley-VCH Verlag GmbH & Co., Weinheim, p 151

    Google Scholar 

  67. Haas I, Shanmugam S, Gedanken A (2006) Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone). J Phys Chem B 110:16947–16952

    Article  CAS  Google Scholar 

  68. Sáez V, Graves J, Paniwnyk L, Mason TJ (2010) Copper electrocrystallization on titanium electrodes: controlled growth of copper nuclei using a potential step technique. Phys Procedia 3:111–115

    Article  Google Scholar 

  69. Schneider O, Matić S, Argirusis C (2008) Application of the electrochemical quartz crystal microbalance technique to copper sonoelectrochemistry Part 1. Sulfate-based electrolytes. Electrochim Acta 53:5485–5495

    Article  CAS  Google Scholar 

  70. Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A (2000) Shape‐controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods tools. Langmuir 16:6396–6399

    Article  CAS  Google Scholar 

  71. Liu S, Huang W, Chen S, Avivi S, Gedanken A (2001) Synthesis of X-ray amorphous silver nanoparticles by the pulse sonoelectrochemical method. J Non Cryst Solids 283:231–236

    Article  CAS  Google Scholar 

  72. Liu YC, Lin L-H (2004) New pathway for the synthesis of ultrafine silver nanoparticles form bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem Commun 6:1163–1168

    Article  CAS  Google Scholar 

  73. Jiang L-P, Wang A-N, Zhao Y, Zhang J-R, Zhu J-J (2004) Novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg Chem Commun 7:506–509

    Article  CAS  Google Scholar 

  74. Vu LV, Long NN, Doanh SC, Trung BQ (2009) Preparation of silver nanoparticles by pulsed sonoelectrochemical method and studying their characteristics. J Phys Conf Ser 187:012077

    Article  Google Scholar 

  75. Lei H, Tang Y-J, Wei J-J, Li J, Li X-B, Shi H-L (2007) Synthesis of tungsten nanoparticles by sonoelectrochemistry. Ultrason Sonochem 14:81–83

    Article  CAS  Google Scholar 

  76. Argirusis C, Matić S, Schneider O (2008) An EQCM study of ultrasonically assisted electrodeposition of Co/CeO2 and Ni/CeO2 composites for fuel cell applications. Phys Status Solidi A 205:2400–2404

    Article  CAS  Google Scholar 

  77. Xue Y-J, Liu H-B, Lan M-M, Li J-S, Li H (2010) Effect of different electrodeposition methods on oxidation resistance of Ni-CeO2 nanocomposite coating. Surf Coat Technol 204:3539–3545

    Article  CAS  Google Scholar 

  78. Lee D, Gan YX, Chen X, Kysar JW (2007) Influence of ultrasonic irradiation on the microstructure of Cu/Al2O3, CeO2 nanocomposite thin films during electrocodeposition. Mater Sci Eng A 447:209–216

    Article  Google Scholar 

  79. Gedanken A (2007) Doping nanoparticles into polymers and ceramics using ultrasound radiation. Ultrason Sonochem 14:418–430

    Article  CAS  Google Scholar 

  80. Sakkas PM, Schneider O, Sourkouni G, Argirusis C (2014) Sonochemistry in the service of SOFC research. Ultrason Sonochem 21:1939–1947

    Article  CAS  Google Scholar 

  81. Brenscheidt T, Nitschke F, Söllner O, Wendt H (2001) Molten carbonate fuel cell research II. Comparing the solubility and the in-cell mobility of the nickel oxide cathode material in lithium: potassium and lithium: sodium carbonate melts. Electrochim Acta 46:783

    Article  CAS  Google Scholar 

  82. Kim MH, Hong MZ, Kim Y-S, Park E, Lee H, Ha H-W, Kim K (2006) Cobalt and cerium coated Ni powder as a new candidate cathode material for MCFC. Electrochim Acta 51:6145

    Article  CAS  Google Scholar 

  83. Dabalà M, Pollet BG, Zin V, Campadello E, Mason TJ (2008) Sonoelectrochemical (20 kHz) production of Co65Fe35 alloy nanoparticles from Aotani solutions. J Appl Electrochem 38:395–402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno G. Pollet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pollet, B.G., Sakkas, P.M. (2016). Sonoelectrochemical Production of Fuel Cell Nanomaterials. In: Ozoemena, K., Chen, S. (eds) Nanomaterials for Fuel Cell Catalysis. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29930-3_10

Download citation

Publish with us

Policies and ethics