Skip to main content

Colonization of Campylobacter jejuni in Poultry

  • Chapter
  • First Online:
Campylobacter spp. and Related Organisms in Poultry

Abstract

Campylobacter jejuni produces several virulence factors to colonize the poultry gastrointestinal tract. In commercial broiler chickens, this colonization appears to be predominantly commensal, with C. jejuni found in large numbers in the intestinal mucosa. The consumption of contaminated chicken meat is the major source of human campylobacteriosis, which makes the understanding of the mechanisms of colonization important in the search for alternatives for the treatment and prevention of such zoonosis. In the past few years, the research on the colonization mechanism of C. jejuni in chickens has significantly advanced. This chapter summarizes our increasing knowledge about the main virulence factors involved in the colonization of poultry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A sigma factor (σ) is a bacterial transcription initiation factor that enables specific binding of RNA polymerase to gene promoters. These proteins are distinguished by their characteristic molecular weights (e.g. σ28 refers to the sigma factor with a molecular weight of 28 kDa).

References

  • Abuoun M, Manning G, Cawthraw SA, Ridley A, Ahmed IH, Wassenaar TM, Newell DG (2005) Cytolethal distending toxin (CDT)-negative Campylobacter jejuni strains and anti-CDT neutralizing antibodies are induced during human infection but not during colonization in chickens. Infect Immun 73:3053–3062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alemka A, Nothaft H, Zheng J, Szymanskia CM (2013) N-glycosylation of Campylobacter jejuni surface proteins promotes bacterial fitness. Infect Immun 81:1674–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashgar SS, Oldfield NJ, Wooldridge KG, Jones MA, Irving GJ, Turner DP, DAA Ala’Aldeen (2007) CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut. J Bacteriol 189:1856–1865

    Article  CAS  PubMed  Google Scholar 

  • Atack JM, Kelly DJ (2008) Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni. Microbiology 154:2219–2230

    Article  CAS  PubMed  Google Scholar 

  • Atack JM, Harvey P, Jones MA, Kelly DJ (2008) The Campylobacter jejuni thiol peroxidases Tpx and Bcp both contribute to aerotolerance and peroxide-mediated stress resistance but have distinct substrate specificities. J Bacteriol 190:5279–5290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awad WA, Aschenbach JR, Ghareeb K, Khayal B, Hess C, Hess M (2014) Campylobacter jejuni influences the expression of nutrient transporter genes in the intestine of chickens. Vet Microb 172:195–201

    Article  CAS  Google Scholar 

  • Awad WA, Molnár A, Aschenbach JR, Ghareeb K, Khayal B, Hess C, Liebhart D, Dublecz K, Hess M (2015a) Campylobacter infection in chickens modulates the intestinal epithelial barrier function. Innate Immun 21:151–160

    Article  PubMed  CAS  Google Scholar 

  • Awad WA, Smorodchenko A, Hess C, Aschenbach JR, Molnár A, Dublecz K, Khayal B, Pohl EE, Hess M (2015b) Increased intracellular calcium level and impaired nutrient absorption are important pathogenicity traits in the chicken intestinal epithelium during Campylobacter jejuni colonization. Appl Microbiol Biotechnol 99:6431–6441

    Article  CAS  PubMed  Google Scholar 

  • Baillon ML, van Vliet AH, Ketley JM, Constantinidou C, Penn CW (1999) An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J Bacteriol 181:4798–4804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas D, Fernando U, Reiman C, Willson P, Potter A, Allan B (2006) Effect of cytolethal distending toxin of Campylobacter jejuni on adhesion and internalization in cultured cells and in colonization of the chicken gut. Avian Dis 50:586–593

    Article  PubMed  Google Scholar 

  • Boehm M, Krause-Gruszczynska M, Rohde M, Tegtmeyer N, Takahashi S, Oyarzabal OA, Backert S (2012) Major host factors involved in epithelial cell invasion of Campylobacter jejuni: role of fibronectin, integrin beta1, FAK, Tiam-1, DOCK180 inactivating Rho GTPase Rac1. Front Cell Infect Microbiol 1:17

    Google Scholar 

  • Bolton FJ, Coates D (1983) Development of a blood-free Campylobacter medium: screening tests on basal media and supplements, and the ability of selected supplements to facilitate aerotolerance. J Appl Bacteriol 54:115–125

    Article  CAS  PubMed  Google Scholar 

  • Bolton DJ (2015) Campylobacter virulence and survival factors. Food Microbiol 48:99–108

    Article  PubMed  Google Scholar 

  • Butcher J, Flint A, Stahl M, Stintzi A (2010) Campylobacter Fur and PerR regulons. In: Iron uptake and homeostasis in microorganisms. Caister Academic Press, Norfolk, pp 167–202

    Google Scholar 

  • Chaloner G, Wigley P, Humphrey S, Kemmett K, Lacharme-Lora L, Humphrey T, Williams N (2014) Dynamics of dual infection with Campylobacter jejuni strains in chickens reveals distinct strain-to-strain variation in infection ecology. Appl Environ Microbiol 80:6366–6372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandrashekhar K, Gangaiah D, Pina-Mimbela R, Kassem II, Jeon BH, Rajashekara G (2015) Transducer like proteins of Campylobacter jejuni 81-176: role in chemotaxis and colonization of the chicken gastrointestinal tract. Front Cell Infect Microbiol 27:46

    Google Scholar 

  • Coward C, van Diemen PM, Conlan AJK, Gog JR, Stevens MP, Jones MA, Maskell DJ (2008) Competing isogenic Campylobacter strains exhibit variable population structures in vivo. Appl Environ Microbiol 74:3857–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox NA, Richardson LJ, Buhr JR, Fedorka-Cray JP, Bailey JS, Wilson JL, Hiett KL (2006) Natural presence of Campylobacter spp. in various internal organs of commercial broiler breeder hens. Avian Dis 50:450–453

    Article  CAS  PubMed  Google Scholar 

  • Crawshaw T, Young S (2003) Increased mortality on a free-range layer site. Vet Res 153:664

    Google Scholar 

  • Cremers CM, Knoefler D, Vitvitsky V, Banerjee R, Jakob U (2014) Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo. Proc Natl Acad Sci 111:1610–1619

    Article  CAS  Google Scholar 

  • Davis LM, Kakuda T, DiRita VJ (2009) A Campylobacter jejuni znuA orthologue is essential for growth in low-zinc environments and chick colonization. J Bacteriol 191:1631–1640

    Article  CAS  PubMed  Google Scholar 

  • Day CJ, Hartley-Tassell LE, Shewell LK, King RM, Tram G, Day SK, Semchenko EA, Korolik V (2012) Variation of chemosensory receptor content of Campylobacter jejuni strains and modulation of receptor gene expression under different in vivo and in vitro growth conditions. BMC Microbiol 12:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Carvalho AF, da Silva DM, Azevedo SS, Piatti RM, Genovez ME, Scarcelli E (2014) Detection of CDT toxin genes in Campylobacter spp. strains isolated from broiler carcasses and vegetables in São Paulo, Brazil. Braz J Microbiol 44:693–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Dekker N (2000) Outer-membrane phospholipase A: known structure, unknown biological function. Mol Microbiol 35:711–717

    Article  CAS  PubMed  Google Scholar 

  • Dertz EA, Xu J, Stintzi A, Raymond KN (2006) Bacillibactin-mediated iron transport in Bacillus subtilis. J Am Chem Soc 128:22–23

    Article  CAS  PubMed  Google Scholar 

  • Desvaux M, Hébraud M, Henderson IR, Pallen MJ (2006) Type III secretion: what’s in a name? Trends Microbiol 14:157–160

    Article  CAS  PubMed  Google Scholar 

  • Dhillon AS, Shivaprasad HL, Schaberg D, Wier F, Weber S, Bandli D (2006) Campylobacter jejuni infection in broiler chickens. Avian Dis 50:55–58

    Article  PubMed  Google Scholar 

  • Dipineto L, Gargiulo A, Russo TP, De Luca Bossa LM, Borrelli L, Menna LF, Fioretti A (2011) Campylobacter jejuni, Campylobacter coli, and cytolethal distending toxin genes in laying hens. Avian Dis 55:103–105

    Article  PubMed  Google Scholar 

  • Dufour V, Li J, Flint A, Rosenfeld E, Rivoal K, Georgeault S, Alazzam B, Ermel G, Stintzi A, Bonnaure-Mallet M, Baysse C (2013) Inactivation of the LysR regulator Cj1000 of Campylobacter jejuni affects host colonization and respiration. Microbiology 159:1165–1178

    Article  CAS  PubMed  Google Scholar 

  • Dzieciol M, Wagner M, Hein I (2011) CmeR-dependent gene Cj0561c is induced more effectively by bile salts than the CmeABC efflux pump in both human and poultry Campylobacter jejuni strains. Res Microbiol 162:991–998

    Article  CAS  PubMed  Google Scholar 

  • EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) (2013) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA J 11:3129

    Google Scholar 

  • EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) (2012) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2010. EFSA J 10:233

    Google Scholar 

  • EFSA (European Food Safety Authority) (2010) Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008, Part A: Campylobacter and Salmonella prevalence estimates. EFSA J 8:1503

    Google Scholar 

  • Eucker T, Konkel M (2012) The cooperative action of bacterial fibronectin-binding proteins and secreted proteins promote maximal Campylobacter jejuni invasion of host cells by stimulating membrane ruffling. Cell Microbiol 14:226–238

    Article  CAS  PubMed  Google Scholar 

  • Fernando U, Biswas D, Allan B, Willson P, Potter AA (2007) Influence of Campylobacter jejuni fliA, rpoN and flgK genes on colonization of the chicken gut. Int J Food Microbiol 118:194–200

    Article  CAS  PubMed  Google Scholar 

  • Flanagan RC, Neal-McKinney JM, Dhillon AS, Miller WG, Konkel ME (2009) Examination of Campylobacter jejuni putative adhesins leads to the identification of a new protein, designated FlpA, required for chicken colonization. Infect Immun 77:2399–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint A, Sun YQ, Butcher J, Stahl M, Huang H, Stintzi A (2014) Phenotypic screening of a targeted mutant library reveals Campylobacter jejuni defenses against oxidative stress. Infect Immun 82:2266–2275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flint A, Sun YQ, Stintzi A (2012) Cj1386 is an ankyrin-containing protein involved in heme trafficking to catalase in Campylobacter jejuni. J Bacteriol 194:334–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca BB, Beletti ME, Melo RT, Mendonca EP, Levenhagem MA, Ueira-Vieira C, Rossi DA (2011) Transfer, viability and colonisation of Campylobacter jejuni in the chicken vitellus and in embryos. Br Poult Sci 52:279–286

    Article  CAS  PubMed  Google Scholar 

  • Fonseca BB, Ferreira Júnior A, Santos JP, Coelho LR, Rossi DA, Melo RT, Mendonça EP, Araújo TG, Alves RN, Beletti ME (2015) Campylobacter jejuni increases transcribed IL-1β and cause morphometric changes in ileal enterocytes from poultry. Braz J Poult Sci (in press)

    Google Scholar 

  • Friis C, Wassenaar TM, Javed MA, Snipen L, Lagesen K, Hallin PF, Newell DG, Toszeghy M, Ridley A, Manning G, Ussery DW (2010) Genomic characterization of Campylobacter jejuni strain M1. PLoS ONE 5:1–12

    Article  CAS  Google Scholar 

  • Gharib-Naseri K, Rahimi S, Khaki P (2012) Comparison of the effects of probiotic, organic acid and medicinal plant on Campylobacter jejuni challenged broiler chickens. J Agric Sci Technol 14:1485–1496

    Google Scholar 

  • Guccione E, Leon-Kempis Mdel R, Pearson BM, Hitchin E, Mulholland F, van Diemen PM, Stevens MP, Kelly DJ (2008) Amino aciddependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Mol Microbiol 69:77–93

    Article  CAS  PubMed  Google Scholar 

  • Guerry P, Alm RA, Power ME, Logan SM, Trust TJ (1991) Role of two flagellin genes in Campylobacter motility. J Bacteriol 173:4757–4764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guerry P (2007) Campylobacter flagella: not just for mobility. Trends Microbiol 15:456–461

    Article  CAS  PubMed  Google Scholar 

  • Guerry P, Ewing CP, Schirm M, Lorenzo M, Kelly J, Pattarini D, Majam G, Thibault P, Logan S (2006) Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60:299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunn JS (2000) Mechanisms of bacterial resistance and response to bile. Microbes Infect 2:907–913

    Article  CAS  PubMed  Google Scholar 

  • Guo BQ, Wang Y, Shi F, Barton YW, Plummer P, Reynolds DL, Nettleton D, Grinnage-Pulley T, Lin J, Zhang Q (2008) CmeR functions as a pleiotropic regulator and is required for optimal colonization of Campylobacter jejuni in vivo. J Bacteriol 190:1879–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanel I, Borrmann E, Muller J, Muller W, Pauly B, Liebler-Tenorio EM, Schulze F (2009) Genomic and phenotypic changes of Campylobacter jejuni strains after passage of the chicken gut. Vet Microbiol 136:121–129

    Article  CAS  PubMed  Google Scholar 

  • Hartley-Tassell LE, Shewell LK, Day CJ, Wilson JC, Sandhu R, Ketley JM, Korolik V (2010) Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni. Mol Microbiol 75:710–730

    Article  CAS  PubMed  Google Scholar 

  • He Y, Frye JG, Strobaugh TP, Chen CY (2008) Analysis of AI-2/LuxS-dependent transcription in Campylobacter jejuni strain 81-176. Foodborne Pathog Dis 5:399–415

    Article  CAS  PubMed  Google Scholar 

  • Hendrixson DR, DiRita VJ (2003) Transcription of sigma factor 54 dependent but not sigma factor 28 dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50:687–702

    Article  CAS  PubMed  Google Scholar 

  • Hendrixson DR, Dirita VJ (2004) Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52:471–484

    Article  CAS  PubMed  Google Scholar 

  • Hendrixson DR, Akerley BJ, DiRita VJ (2001) Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40:214–224

    Article  CAS  PubMed  Google Scholar 

  • Hermans D, Van Deun K, Martel A, Van Immerseel F, Messens W, Heyndrickx M, Haesebrouck F, Pasmans F (2011) Colonization factors of Campylobacter jejuni in the chicken gut. Vet Res 42:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Hermans D, Pasmans F, Messens W, Martel A, Van Immerseel F (2012) Poultry as a host for the zoonotic pathogen Campylobacter jejuni. Vector Borne Zoonotic Dis 12:89–98

    Article  PubMed  Google Scholar 

  • Hiett KL, Stintzi A, Andacht TM, Kuntz RL, Seal BS (2008) Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar function gene products potentially important for colonizing the chicken intestine. Funct Integr Genomic 8:407–420

    Article  CAS  Google Scholar 

  • Hofreuter D, Novik V, Galan JE (2008) Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 4:425–433

    Article  CAS  PubMed  Google Scholar 

  • Hofstad MS, McGehee EH, Bennett PC (1958) Avian infectious hepatitis. Avian Dis 2:358

    Article  Google Scholar 

  • Hu L, Raybourne RB, Kopecko DJ (2005) Ca2+ release from host intracellular stores and related signal transduction during Campylobacter jejuni 81-176 internalization into human intestinal cells. Microbiology 151:3097–3105

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Huang J, Jiao XA (2014) Screening of genes expressed in vivo during interaction between chicken and Campylobacter jejuni. J Microbiol Biotechnol 24:217–224

    Article  CAS  PubMed  Google Scholar 

  • Humphrey S, Chaloner G, Kemmett K, Davidson N, Williams N, Kipar A, Humphrey T, Wigleya P (2014) Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare. mBio 4:1–7

    Google Scholar 

  • Ishikawa T, Mizunoe Y, Kawabata S, Takade A, Harada M, Wai SN, Yoshida S (2003) The iron-binding protein Dps confers hydrogen peroxide stress resistance to Campylobacter jejuni. J Bacteriol 185:1010–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata T, Chiku K, Amano K, Kusumoto M, Ohnishi-Kameyama M, Ono H, Akiba M (2013) Effects of lipooligosaccharide inner core truncation on bile resistance and chick colonization by Campylobacter jejuni. PLoS ONE 8:1–13

    Google Scholar 

  • Jani AJ, Cotter PA (2010) Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe 8:2–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings JL, Sait LC, Perrett CA, Foster C, Williams LK, Humphrey TJ, Cogan TA (2011) Campylobacter jejuni is associated with, but not sufficient to cause vibrionic hepatitis in chickens. Vet Microbiol 149:193–199

    Article  PubMed  Google Scholar 

  • Jeon B, Itoh K, Misawa N, Ryu S (2003) Effects of quorum sensing on flaA transcription and autoagglutination in Campylobacter jejuni. Microbiol Immunol 47:833–839

    Article  CAS  PubMed  Google Scholar 

  • Jeon B, Itoh K, Ryu S (2005) Promoter analysis of cytolethal distend ing toxin genes (cdtA, B, and C) and effect of a luxS mutation on CDT production in Campylobacter jejuni. Microbiol Immunol 49:599–603

    Article  CAS  PubMed  Google Scholar 

  • Jones MA, Marston KL, Woodall CA, Maskell DJ, Linton D, Karlyshev AV, Dorrell N, Wren BW, Barrow PA (2004) Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. Infect Immun 72:3769–3776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakuda T, DiRita VJ (2006) Cj1496c encodes a Campylobacter jejuni glycoprotein that influences invasion of human epithelial cells and colonization of the chick gastrointestinal tract. Infect Immun 74:4715–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanungpean D, Kakuda T, Takai S (2011) Participation of CheR and CheB in chemosensory response of Campylobacter jejuni. Microbiology 157:1279–1289

    Article  CAS  PubMed  Google Scholar 

  • Karlyshev AV, Everest P, Linton D, Cawthraw S, Newell DG, Wren BW (2004) The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 150:1957–1964

    Article  CAS  PubMed  Google Scholar 

  • Kinsella N, Guerry P, Cooney J, Trust TJ (1997) The flgE gene of Campylobacter coli is under the control of the alternative sigma factor 54. J Bacteriol 179:4647–4653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen KN, Bang DD, Andresen LO, Madsen M (2006) Campylobacter jejuni strains of human and chicken origin are invasive in chickens after oral challenge. Avian Dis 50:10–14

    Article  PubMed  Google Scholar 

  • Konkel ME, Klena JD, Rivera-Amill V, Monteville MR, Biswas D, Raphael B, Mickelson J (2004) Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol 186:3296–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konkel ME, Kim BJ, Rivera-Amill V, Garvis SG (1999) Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol Microbiol 32:691–701

    Article  CAS  PubMed  Google Scholar 

  • Konkel ME, Garvis SG, Tipton SL, Anderson DE Jr, Cieplak W Jr (1997) Identification and molecular cloning of a gene encoding a fibronectin-binding protein, (CadF), from Campylobacter jejuni. Mol Microbiol 24:953–963

    Article  CAS  PubMed  Google Scholar 

  • Korolik V, Alderton MR, Smith SC, Chang J, Coloe PJ (1998) Isolation and molecular analysis of colonising and non-colonising strains of Campylobacter jejuni and Campylobacter coli following experimental infection of young chickens. Vet Microbiol 60:239–249

    Article  CAS  PubMed  Google Scholar 

  • Krause-Gruszczynska M, Boehm M, Rohde M, Tegtmeyer N, Takahashi S, Buday L, Oyarzabal OA, Backert S (2011) The signaling path way of Campylobacter jejuni-induced Cdc42 activation: role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2. Cell Commun Sig 9:32

    Article  CAS  Google Scholar 

  • Krause-Gruszczynska M, Rohde M, Hartig R, Genth H, Schmidt G, Keo T, Koenig W, Miller WG, Konkel ME, Backert S (2007) Role of the small Rho GTPases Rac1 and Cdc42 in host cell invasion of Campylobacter jejuni. Cell Microbiol 9:2431–2444

    Article  CAS  PubMed  Google Scholar 

  • Lacal J, García-Fontana C, Muñoz-Martínez F, Ramos JL, Krell T (2010) Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environ Microbiol 12:2873–2884

    Article  CAS  PubMed  Google Scholar 

  • Lam KM, DaMassa AJ, Morishita TY, Shivaprasad HL, Bickford AA (1992) Pathogenicity of Campylobacter jejuni for Turkeys and chickens. Avian Dis 36:359–363

    Article  CAS  PubMed  Google Scholar 

  • Lamb-Rosteski JM, Kalischuk LD, Inglis GD, Buret AG (2008) Epidermal growth factor inhibits Campylobacter jejuni-induced claudin-4 disruption, loss of epithelial barrier function, and Escherichia coli translocation. Infect Immun 76:3390–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson CL, Shah DH, Dhillon AS, Call DR, Ahn S, Haldorson GJ, Davitt C, Konkel ME (2008) Campylobacter jejuni invade chicken LMH cells inefficiently and stimulate differential expression of the chicken CXCLi1 and CXCLi2 cytokines. Microbiology 154:3835–3847

    Article  CAS  PubMed  Google Scholar 

  • Lertpiriyapong K, Gamazon ER, Feng Y, Park DS, Pang J, Botka G, Graffam ME, Ge Z, Fox JG (2012) Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization. PLoS ONE 7:e42842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Lou H, Ojcius DM, Sun A, Sun D, Zhao J, Lin X, Yan J (2014) Methyl-accepting chemotaxis proteins 3 and 4 are responsible for Campylobacter jejuni chemotaxis and jejuna colonization in mice in response to sodium deoxycholate. J Med Microbiol 63:343–354

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Akiba M, Sahin O, Zhang Q (2005) CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob Agents Chemother 49:1067–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Martines A (2006) Effect of efflux pump inhibitors on bile resistance and in vivo colonization of Campylobacter jejuni. J Antimicrob Chemother 58:966–972

    Article  CAS  PubMed  Google Scholar 

  • Louis P, O’Byrne CP (2010) Life in the gut: microbial responses to stress in the gastrointestinal tract. Sci. Progress 93:7–36

    Article  Google Scholar 

  • Lu Q, Li S, Shao F (2015) Sweet talk: protein glycosylation in bacterial interaction with the host. Trends Microbiol 23:630–641

    Article  CAS  PubMed  Google Scholar 

  • Luber P, Bartelt E (2007) Enumeration of Campylobacter spp. on the surface and within chicken breast fillets. J Appl Microbiol 102:313–318

    Article  CAS  PubMed  Google Scholar 

  • Lukas GN (1955) Avian infectious hepatitis—a preliminary report. J Am Vet Med Assoc 126:402

    CAS  PubMed  Google Scholar 

  • Mahdavi J, Pirinccioglu N, Oldfield NJ, Carlsohn E, Stoof J, Aslam A, Self T, Cawthraw SA, Petrovska L, Colborne N, Sihlbom C, Borén T, Wooldridge KG, Ala’Aldeen DA (2014) A novel O-linked glycan modulates Campylobacter jejuni major outer membrane proteinmediated adhesion to human histo-blood group antigens and chicken colonization. Open Biol 4:1–15

    Article  CAS  Google Scholar 

  • Marchant J, Wren B, Ketley J (2002) Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol 10:155–159

    Article  CAS  PubMed  Google Scholar 

  • Medeiros DT, Sattar SA, Farber JM, Carrillo CD (2008) Occurrence of Campylobacter spp. in raw and ready-to-eat foods and in a Canadian food service operation. J Food Protect 71:2087–2093

    Google Scholar 

  • Merritt ME, Donaldson JR (2009) Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol 58:1533–1541

    Article  CAS  PubMed  Google Scholar 

  • Mertins S, Allna BJ, Townsend HG, Köster W, Potter AA (2013) Role of motAB in adherence and internalization in polarized Caco-2 cells and in cecal colonization of Campylobacter jejuni. Avian Dis 57:116–122

    Article  PubMed  Google Scholar 

  • Miller LD, Russell MH, Alexandre G (2009) Diversity in bacterial chemotactic responses and niche adaptation. Adv Appl Microbiolog 66:53–75

    Article  CAS  Google Scholar 

  • Moore RW (1958) Studies of an agent causing hepatitis in chickens. Avian Dis 2:39

    Article  Google Scholar 

  • Mortensen NP, Schiellerup P, Boisen N, Klein BM, Locht H, Abuoun M, Newell D, Krogfelt KA (2011) The role of Campylobacter jejuni cytolethal distending toxin in gastroenteritis: toxin detection, antibody production, and clinical outcome. APMIS 119:626–634

    Article  CAS  PubMed  Google Scholar 

  • Muller SI, Valdebenito M, Hantke K (2009) Salmochelin, the long-overlooked catecholate siderophore of Salmonella. Biometals 22:691–695

    Article  PubMed  CAS  Google Scholar 

  • Nachamkin I, Yang XH, Stern NJ (1993) Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl Environ Microbiol 59:1269–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naikare H, Palyada K, Panciera R, Marlow D, Stintzi A (2006) Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect Immun 74:5433–5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naikare H, Butcher J, Flint A, Xu J, Raymond KN, Stintzi A (2013) Campylobacter jejuni ferric-enterobactin receptor CfrA is TonB3 dependent and mediates iron acquisition from structurally different catechol siderophores. Metallomics 5:988–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neal-McKinney JM, Christensen JE, Konkel ME (2010) Amino-terminal residues dictate the export efficiency of the Campylobacter jejuni filament proteins via the flagellum. Mol Microbiol 76:918–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Nuijten PJ, van Asten FJ, Gaastra W, van der Zeijst BA (1990) Structural and functional analysis of two Campylobacter jejuni flagellin genes. J Biol Chem 265:17798–17804

    CAS  PubMed  Google Scholar 

  • Palyada K, Sun YQ, Flint A, Butcher J, Naikare H, Stintzi A (2009) Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. BMC Genom 10:481

    Article  CAS  Google Scholar 

  • Palyada K, Threadgill D, Stintzi A (2004) Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186:4714–4729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesci EC, Cottle DL, Pickett CL (1994) Genetic, enzymatic, and pathogenic studies of the iron superoxide dismutase of Campylobacter jejuni. Infect Immun 62:2687–2694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plummer PJ (2012) LuxS and quorum-sensing in Campylobacter. Front Cell Infect Microbiol 2:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quiñones B, Miller WG, Bates AH, Mandrell RE (2009) Autoinducer-2 production in Campylobacter jejuni contributes to chicken colonization. Appl Environ Microbiol 75:281–285

    Article  PubMed  CAS  Google Scholar 

  • Raphael BH, Pereira S, Flom GA, Zhang Q, Ketley JM, Konkel ME (2005) The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J Bacteriol 187:3662–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100:3584–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeser RJ, Medler RT, Billington SJ, Jost BH, Joens LA (2007) Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl Environ Microbiol 73:1908–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson LJ, Cox NA, Buhr RJ, Harrison MA (2011) Isolation of Campylobacter from circulating blood of commercial broilers. Avian Dis 55:375–378

    Article  CAS  PubMed  Google Scholar 

  • Ringoir DD, Korolik V (2003) Colonisation phenotype and colonisation potential differences in Campylobacter jejuni strains in chickens before and after passage in vivo. Vet Microbiol 92:225–235

    Article  CAS  PubMed  Google Scholar 

  • Rizal A, Kumar A, Vidyarthi AS (2010) Prevalence of pathogenic genes in Campylobacter jejuni isolates from poultry and human. Internet J Food Safety 12:29–34

    Google Scholar 

  • Samuelson DR, Konkel ME (2013) Serine phosphorylation of cortactin is required for maximal host cell invasion by Campylobacter jejuni. Cell Commun Signaling 11:82

    Article  CAS  Google Scholar 

  • Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476

    Article  CAS  PubMed  Google Scholar 

  • Sevolan MC, Winterfield RW, Goldman CO (1958) Avian infectious hepatitis: I. Clinical and pathological manifestations. Avian Dis 2:3–18

    Article  Google Scholar 

  • Silverman JM, Brunet YR, Cascales E, Mougous JD (2012) Structure and regulation of the type VI secretion system. Ann Rev Microbiol 66:453–472

    Article  CAS  Google Scholar 

  • Soerjadi AS, Snoeyenbos GH, Weinack OM (1982) Intestinal colonization and competitive exclusion of Campylobacter jejuni subsp. jejuni in youg chicks. Avian Dis 26:520–524

    Article  CAS  PubMed  Google Scholar 

  • Stas T (1999) Experimental infection of chickens with Campylobacter jejuni: strains differ in their capacity to colonize the intestine. Avian Pathol 28:61–64

    Article  CAS  PubMed  Google Scholar 

  • Svensson SL, Hyunh S, Parker CT, Gaynor EC (2015) The Campylobacter jejuni CprRS two-component regulatory system regulates aspects of the cell envelope. Mol Microbiol 96:189–209

    Article  CAS  PubMed  Google Scholar 

  • Thibodeau A, Fravalo P, Garneau P, Masson L, Laurent-Lewandowski S, Quessy S, Harel J, Letellier A (2013) Distribution of colonization and antimicrobial resistance genes in Campylobacter jejuni isolated from chicken. Foodborne Pathog Dis 10:382–391

    Article  CAS  PubMed  Google Scholar 

  • Tudor DC (1954) A liver degeneration of unknown origin in chickens. J Am Vet Med Assoc 125:219–220

    CAS  PubMed  Google Scholar 

  • Van Deun K, Pasmans F, Ducatelle R, Flahou B, Vissenberg K, Martel A, Van den Broeck W, Van Immerseel F, Haesebrouck F (2008) Colonization strategy of Campylobacter jejuni results in persistent infection of the chicken gut. Vet Microbiol 130:285–297

    Article  PubMed  Google Scholar 

  • van Dijk A, Veldhuizen EJ, Kalkhove SI, Tjeerdsma-van Bokhoven JL, Romijn RA, Haagsman HP (2007) The beta-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob Agents Chemother 51:912–922

    Article  PubMed  CAS  Google Scholar 

  • Vegge CS, Brondsted L, Li YP, Bang DD, Ingmer H (2009) Energy taxis drives Campylobacter jejuni toward the most favorable conditions for growth. Appl Environ Microbiol 75:5308–5314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassenaar TM, Van der Zeijst BA, Ayling R, Newell DG (1993) Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J Gen Appl Microbiol 139:1171–1175

    Article  CAS  Google Scholar 

  • Whenham GR, Carlson HC, Aksel A (1961) Avian vibrionic hepatitis in Alberta. Can Vet J 2:3–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehouse CA, Balbo PB, Pesci EC, Cottle DL, Mirabito PM, Pickett CL (1998) Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block. Infect Immun 66:1934–1940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte R, Hudson JA, Graham C (2006) Campylobacter in chicken livers and their destruction by pan frying. Lett Appl Microbiol 43:591–595

    Article  CAS  PubMed  Google Scholar 

  • Woodall CA, Jones MA, Barrow PA, Hinds J, Marsden GL, Kelly DJ, Dorrell N, Wren BW, Maskell DJ (2005) Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect Immun 73:5278–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wosten MM, Wagenaar JA, van Putten JP (2004) The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J Biol Chem 279:16214–16222

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Zeng X, Haigh RD, Ketley JM, Lin J (2010) Identification and characterization of a new ferric enterobactin receptor, CfrB, in Campylobacter. J Bacteriol 192:4425–4435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young KT, Davis LM, Dirita VJ (2007) Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5:665–679

    Article  CAS  PubMed  Google Scholar 

  • Young KT (2008) Characterization of CetA and CetB, energy taxis regulators in Campylobacter jejuni Ph.D, University of Michigan

    Google Scholar 

  • Zebian N, Merkx-Jacques A, Pittock PP, Houle S, Dozois CM, Lajoie GA, Creuzenet C (2015) Comprehensive analysis of flagellin glycosylation in Campylobacter jejuni NCTC 11168 reveals incorporation of legionaminic acid and its importance for host colonization. Glycobiology

    Google Scholar 

  • Zeng X, Xu F, Lin J (2009) Molecular, antigenic, and functional characteristics of ferric enterobactin receptor CfrA in Campylobacter jejuni. Infect Immun 77:5437–5448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Mo Y, Xu F, Lin J (2013) Identification and characterization of a periplasmic trilactone esterase, Cee, revealed unique features of ferric enterobactin acquisition in Campylobacter. Mol Microbiol 87:594–608

    Article  CAS  PubMed  Google Scholar 

  • Ziprin RL, Young CR, Byrd JA, Stanker LH, Hume ME, Gray SA, Kim BJ, Konkel ME (2001) Role of Campylobacter jejuni potential virulence genes in cecal colonization. Avian Dis 45:549–557

    Article  CAS  PubMed  Google Scholar 

  • Ziprin RL, Young CR, Stanker LH, Hume ME, Konkel ME (1999) The absence of cecal colonization of chicks by a mutant of Campylobacter jejuni not expressing bacterial fibronectin-binding protein. Avian Dis 43:586–589

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deivid William da Fonseca Batistão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

da Fonseca Batistão, D.W., Fonseca, B.B., Júnior, Á.F., Beletti, M.E. (2016). Colonization of Campylobacter jejuni in Poultry. In: Fonseca, B., Fernandez, H., Rossi, D. (eds) Campylobacter spp. and Related Organisms in Poultry. Springer, Cham. https://doi.org/10.1007/978-3-319-29907-5_3

Download citation

Publish with us

Policies and ethics