Skip to main content

Nanoporous Metals for Fuel Cell Applications

  • Chapter
  • First Online:
Nanoporous Metals for Advanced Energy Technologies

Abstract

Among various green energy technologies, proton exchange membrane fuel cells (PEMFCs) allow highly efficient direct conversion of chemical energies in chemical fuels to electricity. With low or even zero emissions, fuel cells have been attracting worldwide attention for decades. However, the commercialization of fuel cell technologies has been hampered mainly by the heavy demand on Pt electrocatalysts, which are not only expensive, but resource limited as well. In this chapter, we will discuss the structure and electrochemical properties of dealloyed nanoporous metals with an emphasis on their potential for fuel cell applications. As the first example, nanoporous gold (NPG) can be made into very thin freestanding membranes by etching commercially available white gold leaves in an appropriate electrolyte. This material itself is catalytically active for a series of electrode reactions, and upon further surface functionalization, NPG leaf-based electrocatalysts can demonstrate unique structural advantages that are crucial to fuel cell electrodes, such as high surface area, high electric conductivity, high durability, and high precious metal utilization. After the discussion of Pt–NPG leaves for low Pt hydrogen fuel cells, we will discuss in detail how to rationally design ultralow Pt loading, yet highly active and stable electrocatalysts used for direct formic acid fuel cells (DFAFCs), based on the understanding of electrode reactions at the molecular level and a series of high-precision surface modification techniques. Besides, we will review the recent progresses in the design and processing of nanoporous alloy electrocatalysts. By selecting the proper composition of precursor multielement alloys and suitable dealloying conditions, a wide variety of nanoporous alloy materials can be produced with tunable surface area and chemical states. When coupled with other fabrication techniques, the dealloying method becomes a versatile tool for the construction of nanoporous electrodes for anodic oxidation of small organic molecules or cathodic reaction of oxygen in acidic or alkaline solutions. Finally, we will end this chapter with conclusion and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, Hoboken, p 2003

    Book  Google Scholar 

  2. Lambert RM (1997) Introduction to heterogeneous catalysis. In: Lambert RM, Pacchioni G (eds) Chemisorption and reactivity on supported clusters and thin films, 1997. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  3. Yamada M, Honma I (2004) A biopolymer composite material as an anhydrous proton-conducting membrane. Angew Chem Int Ed 43(28):3688–3691

    Google Scholar 

  4. Grot WG (1972) CF2 = CFCF2CF2SO2F and derivatives and polymers thereof. U. S. Patent 3, 718, 627

    Google Scholar 

  5. Grot WGG SA (2004) Fuel cell membranes. U. S. Patent, 6, 733, 914

    Google Scholar 

  6. Grot, GW (1994) Perfluorinated ion-exchange polymers and their use in research and industry. Macromol Symposia 82:161–172

    Google Scholar 

  7. Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, Berlin

    Google Scholar 

  8. Information from websites: http://www.fuelcells.dupont.com/ and http://www.ion-power.com/

  9. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  Google Scholar 

  10. Anderson ML, Stroud RM, Rolison DR (2002) Enhancing the activity of fuel-cell reactions by designing three-dimensional nanostructured architectures: catalyst-modified carbon-silica composite aerogels. Nano Lett 2:235–240

    Article  Google Scholar 

  11. Wilson MS et al (1993) Surface area loss of supported platinum in polymer electrolyte fuel cells. J Electrochem Soc 140:2872–2877

    Article  Google Scholar 

  12. Alkire RC et al (1997) Advances in electrochemical science and engineering, vol 5. Wiley, New York

    Google Scholar 

  13. Campbell CT, Parker SC, Starr DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298(5594):811–814

    Article  Google Scholar 

  14. Blom DA et al (2003) Preparation of cross-sectional samples of proton exchange membrane fuel cells by ultramicrotomy for TEM. J Electrochem Soc 150(4):A414

    Article  Google Scholar 

  15. Xia Y et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103

    Article  Google Scholar 

  16. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325

    Article  Google Scholar 

  17. Sasaki K et al (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49(46):8602–8607

    Article  Google Scholar 

  18. Shao MH et al (2010) Pt monolayer on porous Pd–Cu alloys as oxygen reduction electrocatalysts. J Am Chem Soc 132:9253–9255

    Article  Google Scholar 

  19. Wang C et al (2008) A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew Chem Int Ed 47(19):3588–3591

    Article  Google Scholar 

  20. Borup R et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  Google Scholar 

  21. Joo SH et al (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412:169–172

    Article  Google Scholar 

  22. Wang C et al (2004) Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett 4:345–348

    Article  Google Scholar 

  23. Vinodgopal K et al (2004) Fullerene-Based carbon nanostructures for methanol oxidation. Nano Lett 4:415–418

    Article  Google Scholar 

  24. Information from http://www.webelements.com

  25. Ding Y, Kim YJ, Erlebacher J (2004) Nanoporous gold leaf:“ancient technology”/advanced material. Adv Mater 16:1897–1900

    Google Scholar 

  26. Fujita T et al (2008) Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields. Phys Rev Lett 101(16):166601

    Article  Google Scholar 

  27. Zhang J et al (2007) Nanostructured porous gold for methanol electro-oxidation. J Phys Chem C 111:10382–10388

    Article  Google Scholar 

  28. Zeis R et al (2008) Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J Catal 253(1):132–138

    Article  Google Scholar 

  29. Ding Y, Chen M, Erlebacher J (2004) Metallic mesoporous nanocomposites for electrocatalysis. J Am Chem Soc 126:6876–6877

    Article  Google Scholar 

  30. Liu P et al (2009) Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in Situ redox replacement reaction. Langmuir 25(1):561–567

    Article  Google Scholar 

  31. Pedersen MØ et al (1999) How a gold substrate can increase the reactivity of a Pt overlayer. Surf Sci 426:395–409

    Article  Google Scholar 

  32. Du B, Tong Y (2005) A coverage-dependent study of Pt spontaneously deposited onto Au and Ru surfaces: direct experimental evidence of the ensemble effect for methanol electro-oxidation on Pt. J Phys Chem B 109:17775–17780

    Article  Google Scholar 

  33. Frelink T, Visscher W, Van Veen JAR (1995) Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol. J Electroanal Chem 382: 65–72

    Google Scholar 

  34. Kowal A et al (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8:325–330

    Article  Google Scholar 

  35. Ge X et al (2008) Structure dependent electrooxidation of small organic molecules on Pt-decorated nanoporous gold membrane catalysts. Electrochem Commun 10(10):1494–1497

    Article  Google Scholar 

  36. Ge X et al (2009) Tailoring the structure and property of Pt-decorated nanoporous gold by thermal annealing. J Phys Chem C 113(17): 7379–7384

    Google Scholar 

  37. Zeis R et al (2007) Platinum-plated nanoporous gold: an efficient, low Pt loading electrocatalyst for PEM fuel cells. J Power Sour 165(1):65–72

    Article  Google Scholar 

  38. Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sour 182(1):124–132

    Article  Google Scholar 

  39. Ricea C et al (2002) Direct formic acid fuel cells. J Power Sour 111:83–89

    Article  Google Scholar 

  40. Capon A, Parsons R (1973) The oxidation of formic acid at noble metal electrodes. J Electroanal Chem 45:205–231

    Article  Google Scholar 

  41. Samjeske G et al (2006) Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. J Phys Chem B 110:16559–16566

    Article  Google Scholar 

  42. Chen YX et al (2006) Kinetics and mechanism of the electrooxidation of formic acid–spectroelectrochemical studies in a flow cell. Angew Chem Int Ed 45(6):981–985

    Article  Google Scholar 

  43. Osawa M et al (2011) The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum. Angew Chem Int Ed 50(5):1159–1163

    Article  Google Scholar 

  44. Neurock M, Janikb M, Wieckowski A (2008) A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 140:363–378

    Article  Google Scholar 

  45. Lopez-Cudero A et al (2009) Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles. Phys Chem Chem Phys 11(2):416–424

    Article  Google Scholar 

  46. Wang R et al (2010) Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures. Adv Mater 22(16):1845–1848

    Article  Google Scholar 

  47. Wang R et al (2014) Dispersing Pt atoms onto nanoporous gold for high performance direct formic acid fuel cells. Chem Sci 5(1):403–409

    Article  Google Scholar 

  48. Uosaki K et al (1997) Adsorption of hexachloroplatinate complex on Au(111) electrode. An in situ scanning tunneling microscopy and electrochemical quartz microbalance study. Langmuir 13:594–596

    Article  Google Scholar 

  49. Uhm S et al (2008) A stable and cost-effective anode catalyst structure for formic acid fuel cells. Angew Chem Int Ed 47(52):10163–10166

    Article  Google Scholar 

  50. Wang R et al (2014) Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Research 7(11):1569–1580

    Article  Google Scholar 

  51. Snyder J et al (2008) Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv Mater 20(24):4883–4886

    Article  Google Scholar 

  52. Xu C et al (2010) Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Phys Chem Chem Phys 12(1):239–246

    Article  Google Scholar 

  53. Ji H et al (2010) An ultrafine nanoporous bimetallic Ag–Pd alloy with superior catalytic activity. CrystEngComm 12(12):4059

    Article  Google Scholar 

  54. Wang X et al (2011) Length-scale modulated and electrocatalytic activity enhanced nanoporous gold by doping. J Phys Chem C 115(11):4456–4465

    Article  Google Scholar 

  55. Sun J et al (2015) Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum–copper alloy: experiment and density functional theory calculation. J Power Sour 279:334–344

    Article  Google Scholar 

  56. Chen X et al (2015) Multi-component nanoporous platinum–ruthenium–copper–osmium–iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction. J Power Sour 273:324–332

    Article  Google Scholar 

  57. Chen X et al (2014) Highly active nanoporous Pt-based alloy as anode and cathode catalyst for direct methanol fuel cells. J Power Sour 267:212–218

    Article  Google Scholar 

  58. Chen S et al (2012) Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Advances 2(5):1820

    Article  Google Scholar 

  59. Xu C et al (2014) A hierarchical nanoporous PtCu alloy as an oxygen-reduction reaction electrocatalyst with high activity and durability. ChemPlusChem 79(1):107–113

    Article  Google Scholar 

  60. Zhang H et al (2013) Nanoporous PdCu alloys as highly active and methanol-tolerant oxygen reduction electrocatalysts. Int J Hydrogen Energy 38(24):10029–10038

    Article  Google Scholar 

  61. Xu C et al (2012) Nanoporous PdCu alloy for formic acid electro-oxidation. J Power Sour 199:124–131

    Article  Google Scholar 

  62. Xu C et al (2011) Fabrication of nanoporous Cu–Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis. ACS Appl Mater Interfaces 3(12):4626–4632

    Article  Google Scholar 

  63. Zhang Z et al (2013) Ultrafine nanoporous PdFe/Fe3O4 catalysts with doubly enhanced activities towards electro-oxidation of methanol and ethanol in alkaline media. J Mater Chem A 1(11):3620

    Article  Google Scholar 

  64. Duan H, Hao Q, Xu C (2014) Nanoporous PtFe alloys as highly active and durable electrocatalysts for oxygen reduction reaction. J Power Sour 269:589–596

    Article  Google Scholar 

  65. Han B, Xu C (2014) Nanoporous PdFe alloy as highly active and durable electrocatalyst for oxygen reduction reaction. Int J Hydrogen Energy 39(32):18247–18255

    Article  Google Scholar 

  66. Xu C et al (2012) Hierarchical nanoporous PtFe alloy with multimodal size distributions and its catalytic performance toward methanol electrooxidation. Langmuir 28(3):1886–1892

    Article  Google Scholar 

  67. Xu C et al (2013) A nanoporous PdCo alloy as a highly active electrocatalyst for the oxygen-reduction reaction and formic acid electrooxidation. Chem Asian J 8(11):2721–2728

    Article  Google Scholar 

  68. Xu C et al (2012) Nanoporous PtCo and PtNi alloy ribbons for methanol electrooxidation. Int J Hydrogen Energy 37(14):10489–10498

    Article  Google Scholar 

  69. Qi Z et al (2011) Novel nanocrystalline PdNi alloy catalyst for methanol and ethanol electro-oxidation in alkaline media. J Power Sour 196(14):5823–5828

    Article  Google Scholar 

  70. Yan X et al (2015) Atomic layer-by-layer construction of Pd on nanoporous gold via underpotential deposition and displacement reaction. RSC Adv 5(25):19409–19417

    Article  Google Scholar 

  71. Xu J et al (2011) Fabrication of bi-modal nanoporous bimetallic Pt–Au alloy with excellent electrocatalytic performance towards formic acid oxidation. Green Chem 13(7):1914

    Article  Google Scholar 

  72. Zhang Z, Wang Y, Wang X (2011) Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid. Nanoscale 3(4):1663–1674

    Article  Google Scholar 

  73. Duan H, Xu C (2015) Nanoporous PtPd alloy electrocatalysts with high activity and stability toward oxygen reduction reaction. Electrochim Acta 152:417–424

    Article  Google Scholar 

  74. Xu C, Hao Q, Duan H (2014) Nanoporous PdPt alloy as a highly active electrocatalyst for formic acid oxidation. J Mater Chem A 2(23):8875

    Article  Google Scholar 

  75. Gasteiger HA et al (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56(1–2):9–35

    Article  Google Scholar 

  76. Xu C et al (2010) Nanoporous PtRu alloys for electrocatalysis. Langmuir 26(10):7437–7443

    Article  Google Scholar 

  77. Wang X et al (2012) Novel Raney-like nanoporous Pd catalyst with superior electrocatalytic activity towards ethanol electro-oxidation. Int J Hydrogen Energy 37(3):2579–2587

    Article  Google Scholar 

  78. Wang X et al (2010) Electrochemical catalytic activities of nanoporous palladium rods for methanol electro-oxidation. J Power Sour 195(19):6740–6747

    Article  Google Scholar 

  79. Wang X et al (2009) High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid. Electrochem Commun 11(10):1896–1899

    Article  Google Scholar 

  80. Xu C et al (2013) Nanoporous PdNi alloy as highly active and methanol-tolerant electrocatalyst towards oxygen reduction reaction. J Mater Chem A 1:13542–13548

    Google Scholar 

  81. Liu Y, Xu C (2013) Nanoporous PdTi alloys as non-platinum oxygen-reduction reaction electrocatalysts with enhanced activity and durability. ChemSusChem 6(1):78–84

    Article  Google Scholar 

  82. Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49(8):3557–3566

    Article  Google Scholar 

  83. Nørskov JK et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Article  Google Scholar 

  84. Ding Y et al (2005) Epitaxial casting of nanotubular mesoporous platinum. Angew Chem Int Ed 44(26):4002–4006

    Google Scholar 

  85. Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129:12624–12625

    Article  Google Scholar 

  86. Srivastava R et al (2007) Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew Chem Int Ed 46(47):8988–8991

    Article  Google Scholar 

  87. Stamenkovic VR et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247

    Article  Google Scholar 

  88. Stamenkovic VR et al (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128(27):8813–8819

    Article  Google Scholar 

  89. Stamenkovic VR et al (2007) Improved oxygen reduction activity on Pt3Ni via increased surface site availability. Science 315:493–497

    Article  Google Scholar 

  90. Koh PS et al (2010) Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem 2:454–460

    Article  Google Scholar 

  91. Duan H, Hao Q, Xu C (2015) Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction. J Power Sour 280:483–490

    Article  Google Scholar 

  92. Wang R et al (2012) Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ Sci 5(1):5281–5286

    Article  Google Scholar 

  93. Snyder J et al (2010) Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat Mater 9:904–907

    Article  Google Scholar 

  94. Snyder J, Livi K, Erlebacher J (2013) Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous NiPt alloy nanoparticles. Adv Funct Mater 23(44):5494–5501

    Article  Google Scholar 

  95. Benn E, Uvegi H, Erlebacher J (2015) Characterization of nanoporous metal-ionic liquid composites for the electrochemical oxygen reduction reaction. J Electrochem Soc 162(10):H759–H766

    Article  Google Scholar 

  96. Xu C et al (2009) Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction. Chem Mater 21(14):3110–3116

    Article  Google Scholar 

  97. Yang R et al (2013) Dealloyed PdCu3 thin film electrocatalysts for oxygen reduction reaction. J Power Sour 222:169–176

    Article  Google Scholar 

  98. Zhou Y et al (2015) Oxygen reduction at very low overpotential on nanoporous Ag catalysts. Adv Energy Mater 5(13): 1500149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ding, Y., Zhang, Z. (2016). Nanoporous Metals for Fuel Cell Applications. In: Nanoporous Metals for Advanced Energy Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-29749-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29749-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29747-7

  • Online ISBN: 978-3-319-29749-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics