Skip to main content

Chiral Anomalies

  • Chapter
  • First Online:
Geometrodynamics of Gauge Fields

Part of the book series: Mathematical Physics Studies ((MPST))

  • 1498 Accesses

Abstract

Anomalies can be viewed as a breaking of some Noether symmetry through the effects of the vacuum. In relativistic quantum field theory (QFT), such a (classical) symmetry is broken by field quantization; cf. Holstein (Am J Phys 61(2):142–147, 1993, Am J Phys 82(6):591–596, 2014), Van Holten (Aspects of BRST quantization. Topology and geometry in physics, 2005) for rather recent reviews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler SL, Bardeen WA (1969) Absence of higher order corrections in the anomalous axial vector divergence equation. Phys Rev 182(5):1517

    Article  ADS  Google Scholar 

  • Alfaro J, Urrutia LF, Vergara JD (1988) Extended definition of the regulated Jacobian in the path integral calculation of anomalies. Phys Lett B 202(1):121–126

    Article  ADS  Google Scholar 

  • Alfaro J, Urrutia LF, Vergara JD (1989) Anomalous Jacobians and the vector anomaly. In: Quantum mechanics of fundamental systems proceedings vol 2, Edited by Claudio Teitelboim and Jorge Zanelli. Plenum Press, NY, pp 1–12

    Google Scholar 

  • Ashtekar A (1988) New perspectives in canonical gravity. Bibliopolis. Naples

    Google Scholar 

  • Atiyah MF (1998) The Dirac equation and geometry. In: Pais A et al (eds) Paul Dirac. Cambridge University Press, pp 108–124

    Google Scholar 

  • Bell JS, Jackiw R (1969) A PCAC puzzle: \(\pi ^0 \rightarrow 2\gamma \) in the \(\sigma \) model. Il Nuovo Cimento A 60(1):47–61

    Google Scholar 

  • Bertlmann RA, Kohlprath E (2001) Gravitational anomalies in a dispersive approach. Nucl Phys B-Proc Suppl 96(1):293–298

    Article  ADS  MATH  Google Scholar 

  • Chandia O, Zanelli J (1997) Topological invariants, instantons, and the chiral anomaly on spaces with torsion. Phys Rev D 55(12):7580

    Article  ADS  MathSciNet  Google Scholar 

  • Deser S, Schwimmer A (1993) Geometric classification of conformal anomalies in arbitrary dimensions. Phys Lett B 309(3):279–284

    Article  ADS  MathSciNet  Google Scholar 

  • Erler J (1994) Anomaly cancellation in six-dimensions. J Math Phys 35(4):1819–1833

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Faddeev LD (1984) Operator anomaly for the Gauss law. Phys Lett B 145(1):81–84

    Article  ADS  MathSciNet  Google Scholar 

  • Fujikawa K (1979) Path-integral measure for gauge-invariant fermion theories. Phys Rev Lett 42(18):1195

    Article  ADS  Google Scholar 

  • Gamboa J, Schmidt I, Vergara L (1997) Anomaly and condensate in the light-cone Schwinger model. Phys Lett B 412(1):111–118

    Article  ADS  MathSciNet  Google Scholar 

  • Hehl FW, McCrea JD, Mielke EW, Ne’eman Y (1995) Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys Rep 258(1):1–171

    Google Scholar 

  • Holstein BR (1993) Anomalies for pedestrians. Am J Phys 61(2):142–147

    Article  ADS  Google Scholar 

  • Holstein BR (2014) Understanding an anomaly. Am J Phys 82(6):591–596

    Article  ADS  Google Scholar 

  • Itzykson C, Zuber JB (1980) Quantum field theory. McGraw Hill, New York

    MATH  Google Scholar 

  • Jackiw R, Pi SY (2000) Creation and evolution of magnetic helicity. Phys Rev D 61(10):105015

    Article  ADS  MathSciNet  Google Scholar 

  • Jiang W (1991) The anomalous Ward identities in gauge and gravitational theories. J Math Phys 32(12):3409–3411

    Article  ADS  MathSciNet  Google Scholar 

  • Kim JE, Carosi G (2010) Axions and the strong CP problem. Rev Mod Phys 82(1):557

    Article  ADS  Google Scholar 

  • Kimura T, Nishioka T (2012) The chiral heat effect. Prog Theor Phys 127(6):1009–1017

    Article  ADS  MATH  Google Scholar 

  • Kodama H (1990) Holomorphic wave function of the Universe. Phys Rev D 42(8):2548

    Article  ADS  MathSciNet  Google Scholar 

  • Kreimer D, Mielke EW (2001) Comment on: topological invariants, instantons, and the chiral anomaly on spaces with torsion. Phys Rev D 63(4):048501

    Article  ADS  MathSciNet  Google Scholar 

  • Kreimer D, Panzer E (2013) Renormalization and Mellin transforms. In: Computer algebra in quantum field theory. Springer, New York, pp 195–223

    Google Scholar 

  • Leutwyler H (1986) Anomalies. Helvetica Physica Acta 59(2):201–219

    MathSciNet  Google Scholar 

  • Mavromatos N (1988) A note on the Atiyah-Singer index theorem for manifolds with totally antisymmetric H torsion. J Phys A: Math Gen 21(10):2279

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW (1992) Ashtekar’s complex variables in general relativity and its teleparallelism equivalent. Ann Phys 219(1):78–108

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW (2002) Chern–Simons solution of the chiral teleparallelism constraints of gravity. Phys Rev D 622(1):457–471

    Google Scholar 

  • Mielke EW (2004) Consistent coupling to Dirac fields in teleparallelism: comment on Metric-affine approach to teleparallel gravity. Phys Rev D 69(12):128501

    Article  ADS  Google Scholar 

  • Mielke EW (2006) Anomalies and gravity. In: Pérez MA, Urrutia LF, Villaseñor L (eds) Commemorative volume of the division of particles and fields of the Mexican physical society, Morelia Michoacán, 6–12 November 2005, part B, pp 246–257 (AIP conference proceedings, Melville, N.Y. 2006)

    Google Scholar 

  • Mielke EW, Kreimer D (1998) Chiral anomaly in Ashtekar’s approach to canonical gravity. Int J Mod Phys D 7(04):535–548

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW, Kreimer D (1999) Chiral anomaly in contorted spacetimes. General Relativ Gravit 31(5):701–712

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW, Macías A (1999) Chiral supergravity and anomalies. Annalen der Physik (Leipzig) 8:301–317

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW, Rincon AAM (2005) Duality in Yang’s theory of gravity. General Relativ Gravit 37(5):997–1007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW, Romero ES (2006) Cosmological evolution of a torsion-induced quintaxion. Phys Rev D 73(4):043521

    Article  ADS  MathSciNet  Google Scholar 

  • Napsuciale M, Wirzba A, Kirchbach M (2002) Instantons as unitary spin maker. Nucl Phys A 703(1):306–326

    Article  ADS  MATH  Google Scholar 

  • Nelson P, Alvarez-Gaumé L (1985) Hamiltonian interpretation of anomalies. Commun Math Phys 99(1):103–114

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Nieh HT, Yan ML (1982) An identity in Riemann–Cartan geometry. J Math Phys 23(3):373–374

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Obukhov YN, Mielke EW, Budczies J, Hehl FW (1997) On the chiral anomaly in non-Riemannian spacetimes. Found Phys 27(9):1221–1236

    Article  ADS  MathSciNet  Google Scholar 

  • Schützhold R (2002) Small cosmological constant from the QCD trace anomaly? Phys Rev Lett 89(8):081302

    Article  ADS  Google Scholar 

  • Schwinger JS (1951) On gauge invariance and vacuum polarization. Phys Rev 82(5):664

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Smalley LL (1986) Discrete Dirac equation on a finite half integer lattice. Il Nuovo Cim A 92:25

    Google Scholar 

  • Tresguerres R, Mielke EW (2000) Gravitational Goldstone fields from affine gauge theory. Phys Rev D 62(4):44004

    Google Scholar 

  • Urrutia LF, Vergara JD (1991) Consistent coupling of the gravitino field to a gravitational background with torsion. Phys Rev D 44(12):3882

    Article  ADS  MathSciNet  Google Scholar 

  • Urrutia LF, Vergara JD (1992) Anomalies in the Fujikawa method using parameter dependent regulators. Phys Rev D 45(4):1365

    Article  ADS  MathSciNet  Google Scholar 

  • Van Holten JW (2005) Aspects of BRST quantization. In: Topology and geometry in physics. Springer, New York, pp 99–166

    Google Scholar 

  • Widom A, Srivastava Y (1988) A simple physical view of the quantum electrodynamic chiral anomaly. Am J Phys 56(9):824–826

    Article  ADS  Google Scholar 

  • Wiesendanger C (1996) Poincaré gauge invariance and gravitation in Minkowski spacetime. Class Quantum Gravity 13(4):681

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yajima S (1996) Evaluation of heat kernel in Riemann-Cartan space. Class Quantum Grav 13:2423

    Google Scholar 

  • Yang JF (2004) Trace anomalies and chiral Ward identities. Chin Phys Lett 21(5):792

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckehard W. Mielke .

Appendix: Gravitational Chern–Simons and Pontryagin Terms

Appendix: Gravitational Chern–Simons and Pontryagin Terms

When the constant Dirac matrices \(\gamma _\alpha \) satisfying \(\gamma _\alpha \,\gamma _\beta +\gamma _\beta \gamma _\alpha =2\mathrm{o}_{\alpha \beta }\) saturate the index of the orthonormal coframe one-form \(\vartheta ^\alpha =E_j{}^\alpha dx^j\) and its Hodge dual \(\eta ^\alpha :={}^*\vartheta ^\alpha \), we obtain a basis of Clifford-algebra-valued exterior forms via

$$\begin{aligned} \gamma :=\gamma _\alpha \vartheta ^\alpha \,,\qquad {}^*\gamma =\gamma ^\alpha \eta _\alpha \,. \end{aligned}$$
(12.4.5)

In terms of the Clifford-algebra-valued connection \(\varGamma := {i\over 4} \varGamma _i{}^{\alpha \beta }\,\sigma _{\alpha \beta } dx^i\), the \(SL(2,\mathbb {C})\)-covariant exterior derivative is given by \(D=d+ \varGamma \wedge \), where \({\sigma }_{\alpha \beta }= \frac{i}{2} (\gamma _\alpha \gamma _\beta -\gamma _\beta \gamma _\alpha )\) are the Lorentz generators entering in the two-form \(\sigma :={i\over 2}\gamma \wedge \gamma = {1\over 2}\,{\sigma }_{\alpha \beta } \,\vartheta ^\alpha \wedge \vartheta ^\beta \).

Differentiation of these basic variables leads to the Clifford-algebra-valued torsion and curvature two-forms

$$\begin{aligned} \varTheta :=D\gamma =T^{\alpha }\gamma _{\alpha }\;, \qquad \varOmega := d\varGamma +\varGamma \wedge \varGamma = {i\over 4}R^{\alpha \beta }\,\sigma _{\alpha \beta } \end{aligned}$$
(12.4.6)

in RC geometry, respectively. The Chern–Simons term for the Lorentz connection reads

$$\begin{aligned} C_\mathrm{RR} := - \mathrm{Tr}\, \left( {\varGamma }\wedge {\varOmega } - {1\over 3} {\varGamma }\wedge {\varGamma }\wedge {\varGamma } \right) \, . \end{aligned}$$
(12.4.7)

The corresponding Pontryagin topological term can be obtained by exterior differentiation:

$$\begin{aligned} dC_\mathrm{RR}= & {} - \mathrm{Tr}\, \left( {\varOmega }\wedge {\varOmega }\right) \nonumber \\= & {} {1\over 2}R^{\{\}}_{\alpha \beta }\wedge R^{\{\}\alpha \beta } \nonumber \\+ & {} \frac{1}{12}d\left[ \,^*{\mathcal A}\wedge R^{\{\}} -\frac{1}{3}{\mathcal A}\wedge d{\mathcal A} +\frac{1}{9} \,^*{\mathcal A}\wedge ^*({\mathcal A} \wedge \,^*{\mathcal A})\right] . \end{aligned}$$
(12.4.8)

The latter contains (Mielke & Romero  2006), among others, a term proportional to the curvature scalar \(R:=\,^*(R^{\alpha \beta }\wedge \eta _{\beta \alpha })\) and the axial torsion piece \(d{\mathscr {A}}\wedge d{\mathscr {A}}\) of the axial anomaly with a relative factor 9, as required by the supersymmetric path integral (Mavromatos 1988).

Since the coframe is the “soldered” translational part (Tresguerres & Mielke 2000) of the Cartan connection, a related translational CS term arises:

$$\begin{aligned} C_\mathrm{TT} := {1\over {8\ell ^2}} \mathrm{Tr}\, ( {\gamma } \wedge {\varTheta } )= {1\over {2\ell ^2}}\, {\vartheta ^\alpha }\wedge T_{\alpha }\,. \end{aligned}$$
(12.4.9)

By exterior differentiation we obtain the four-form of Nieh & Yan (1982):

$$\begin{aligned} dC_\mathrm{TT} = {1\over {8\ell ^2}} \mathrm{Tr}\, (\varTheta \wedge \varTheta -4i\varOmega \wedge \sigma ) ={1\over {2\ell ^2}} \left( T^\alpha \wedge T_\alpha +R_{\alpha \beta }\wedge \vartheta ^\alpha \wedge \vartheta ^\beta \right) \,. \end{aligned}$$
(12.4.10)

It is crucial to note that a fundamental length \(\ell \) necessarily occurs here for dimensional reasons. This can also be understood by a de Sitter-type gauge approach, in which the \(\mathfrak {sl}(5,\mathbb {R})\)-valued connection \({\hat{\varGamma }} =\varGamma +(\vartheta ^\alpha L^4{}_\alpha + \vartheta _\beta L^\beta {}_4{})/\ell \) is expanded into the dimensionless linear connection \(\varGamma \) plus the coframe \(\vartheta ^\alpha = E_i{}^\alpha \, dx^i\), which carries canonical dimension [length]. The corresponding Pontryagin term \({\hat{C}}_\mathrm{RR}\) splits via

$$\begin{aligned} {\hat{C}}_\mathrm{RR} =C_\mathrm{RR} -2 C_\mathrm{TT} \end{aligned}$$
(12.4.11)

into a linear term and a translational CS term; see footnote 31 of Hehl et al. (1995).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mielke, E.W. (2017). Chiral Anomalies. In: Geometrodynamics of Gauge Fields. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-29734-7_12

Download citation

Publish with us

Policies and ethics