Skip to main content

The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design

  • Chapter
  • First Online:
Photoelectrochemical Solar Fuel Production

Abstract

Fundamental aspects of the oxygen evolution reaction mediated by metal oxide catalysts are presented. The oxygen evolution reaction is a critical bottleneck in the generation of hydrogen as a renewable fuel via water-splitting. Accordingly, understanding and optimising the oxygen evolution reaction is a major challenge for renewable energy research. In this chapter, key mechanistic concepts are discussed from the perspective of traditional electrochemical kinetics and modern computational methods. The application of a suite of electrochemical techniques forms the basis of a valuable kinetic and mechanistic study of the oxygen evolution reaction and theoretical calculations provide a thermodynamic basis for understanding the electrochemical activity of oxide materials. Building on this fundamental knowledge, oxygen evolution catalyst design is considered in terms of single-parameter activity descriptors and more sophisticated strategies for catalytic enhancement. Taken together, these approaches provide important insight into the requirements for efficient oxygen evolution catalysis. Ultimately, knowledge of the structural and chemical features of the active site is essential for oxygen evolution catalyst design. This chapter concludes with a molecular level consideration of the nature of the active site at metal oxide catalysts, presenting a possible unifying concept in oxygen evolution catalysis which seeks to bridge the field of heterogeneous electrocatalysis with homogeneous molecular catalysis, and relate more general ideas in catalysis to electrochemical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Traditionally Tafel plots were recorded using Galvanostatic methods where the current was controlled and the potential was measured, as described by Eq. (2.9). In this way, the Tafel slope could be obtained directly from the experimental plots, hence the convention of reporting the Tafel slope in the form of Eq. (2.10). However, due to the ease with which the potential can be controlled using modern potentiostats, Tafel plots are now routinely recorded in the form of Eq. (2.8) and the corresponding Tafel slope is obtained from the inverse slope of the experimental plot.

  2. 2.

    Self-discharge is assumed to proceed by an electrochemical mechanism analogous to that of corrosion. That is, the simultaneous occurrence of anodic and cathodic reactions as a mixed potential via a local cell mechanism. In the present case, self-discharge consists of a cathodic oxide or surfaquo group reduction process and an anodic oxygen evolution process.

  3. 3.

    Applying this check to the low Tafel slope data in Fig. 2.4 gives m x,i  = −(0.058)(1.01) = −0.059, in agreement with the slope of −0.057 obtained for a plot of V measured at 1.0 mA cm−2 versus \( \log\ {a}_{{\mathrm{OH}}^{-}} \).

    Fig. 2.4
    figure 4

    Steady-state polarisation curves recorded for a hydrous iron oxide catalyst film in a series of aqueous NaOH solutions of varying concentrations. The Tafel regions are indicated by the triangular features. Reaction order plots generated at fixed potentials in the low and high Tafel regions are shown in the inset. Adapted from Doyle and Lyons (2013)

  4. 4.

    The significance of this reference potential is beyond the scope of this discussion but interested readers are directed to Busch et al. (2011a, 2011b) for more details.

  5. 5.

    IS and CV studies can provide a useful qualitative and quantitative characterisation of the charge-transport processes in mixed ionic/electronic conductors. The IS analysis of such processes is discussed in detail by Bisquert et al. (2000a, 2000b) and Terezo et al. (2001), whereas the CV characteristics have been comprehensively reviewed by Doyle et al. (2013).

References

  • Akimov AV, Muckerman JT, Prezhdo OV (2013) Nonadiabatic dynamics of positive charge during photocatalytic water splitting on GaN(10-10) surface: charge localization governs splitting efficiency. J Am Chem Soc 135:8682–8691

    Article  Google Scholar 

  • Albery WJ (1975) Electrode kinetics. Clarendon, Oxford, p 41

    Google Scholar 

  • Balasubramanian M, Melendres CA, Mini S (2000) X-ray absorption spectroscopy studies of the local atomic and electronic structure of iron incorporated into electrodeposited hydrous nickel oxide films. J Phys Chem B 104:4300–4306

    Article  Google Scholar 

  • Ballhausen CJ, Gray HB (1962) The electronic structure of the vanadyl ion. Inorg Chem 1:111–122

    Article  Google Scholar 

  • Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, pp 87–136

    Google Scholar 

  • Bediako DK, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra VK, Nocera DG (2012) Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J Am Chem Soc 134:6801–6809

    Article  Google Scholar 

  • Bediako DK, Surendranath Y, Nocera DG (2013) Mechanistic studies of the oxygen evolution reaction mediated by a nickel–borate thin film electrocatalyst. J Am Chem Soc 135:3662–3674

    Article  Google Scholar 

  • Betley TA, Wu Q, Van Voorhis T, Nocera DG (2008) Electronic design criteria for O-O bond formation via metal-oxo complexes. Inorg Chem 47:1849–1861

    Article  Google Scholar 

  • Bian W, Yang Z, Strasser P, Yang R (2014) A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution. J Power Sources 250:196–203

    Article  Google Scholar 

  • Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Ferriols NS, Bogdanoff P, Pereira EC (2000a) Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution. J Phys Chem B 104:2287–2298

    Article  Google Scholar 

  • Bisquert J, Garcia Belmonte G, Fabregat Santiago F, Ferriols NS, Yamashita M, Pereira EC (2000b) Application of a distributed impedance model in the analysis of conducting polymer films. Electrochem Commun 2:601–605

    Article  Google Scholar 

  • Bligaard T, Norskov JK (2007) Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim Acta 52:5512–5516

    Article  Google Scholar 

  • Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224:206–217

    Article  Google Scholar 

  • Bockris JO’M, Khan SUM (1993) Surface electrochemistry. Plenum Press, New York, pp 218–223

    Book  Google Scholar 

  • Bockris JO’M, Otagawa T (1983) Mechanism of oxygen evolution on perovskites. J Phys Chem 87:2960–2971

    Article  Google Scholar 

  • Bockris JOM, Otagawa T (1984) The electrocatalysis of oxygen evolution on perovskites. J Electrochem Soc 131:290–302

    Article  Google Scholar 

  • Bockris JO’M, Reddy AKN, Gamboa-Aldeco M (2002) Modern electrochemistry 2A, 2nd edn. Kluwer Academic Publishers, New York, p 1412

    Book  Google Scholar 

  • Bourgault PL, Conway BE (1960) The electrochemical behavior of the nickel oxide electrode. Part 2. Quasi-equilibrium behavior. Can J Chem 38:1557–1575

    Article  Google Scholar 

  • Brimblecombe R, Dismukes GC, Swiegers GF, Spiccia L (2009) Molecular water oxidation catalysts for photoelectrochemical cells. Dalton Trans 43:9374–9384

    Article  Google Scholar 

  • Burke LD, Lyons MEG (1986) The formation and stability of hydrous oxide films on iron under potential cycling conditions in aqueous solution at high pH. J Electroanal Chem 198:347–368

    Article  Google Scholar 

  • Burke LD (1986) M.E.G. Lyons. In: Bockris JOM, White RE, Conway BE (eds) Modem aspects of electrochemistry, vol 18. Plenum Publ. Corp, New York, pp 169–248

    Chapter  Google Scholar 

  • Burke LD, O’Sullivan EJM (1978) Enhanced oxide growth at a rhodium surface in base under potential cycling conditions. J Electroanal Chem 93:11–18

    Article  Google Scholar 

  • Burke LD, O’Sullivan EJM (1981) Oxygen gas evolution on hydrous oxides – an example of three-dimensional electrocatalysis? J Electroanal Chem 117:155–160

    Article  Google Scholar 

  • Burke LD, Twomey TAM (1984) Influence of the acid/base character of the surface on the electrocatalytic behavior of both nickel and nickel oxide anodes, with particular reference to oxygen gas evolution. J Electroanal Chem 167:285–290

    Article  Google Scholar 

  • Burke LD, Whelan DP (1984) A voltammetric investigation of the charge storage reactions of hydrous iridium oxide layers. J Electroanal Chem 162:121–141

    Article  Google Scholar 

  • Burke LD, Lyons MEG, O’Sullivan EJM, Whelan DP (1981) Influence of hydrolysis on the redox behavior of hydrous oxide films. J Electroanal Chem 122:403–407

    Article  Google Scholar 

  • Burke LD, Lyons MEG, McCarthy M (1982a) Oxygen evolution and corrosion at ruthenium dioxide-based anodes. Adv Hydrogen Energy 3:267

    Google Scholar 

  • Burke LD, Lyons MEG, Whelan DP (1982b) Influence of pH on the reduction of thick anodic oxide films on gold. J Electroanal Chem 139:131–142

    Article  Google Scholar 

  • Burke LD, Collins JA, Horgan MA, Hurley LM, O’Mullane AP (2000) The importance of the active states of surface atoms with regard to the electrocatalytic behaviour of metal electrodes in aqueous media. Electrochim Acta 45:4127–4134

    Article  Google Scholar 

  • Burke LD, O’Connell AM, O’Mullane AP (2003) The role of defects, or active states, in surface electrochemistry with particular reference to gold in neutral solution. J Appl Electrochem 33:1125–1135

    Article  Google Scholar 

  • Busch M, Ahlberg E, Panas I (2011a) Hydroxide oxidation and peroxide formation at embedded binuclear transition metal sites; TM = Cr, Mn, Fe, Co. Phys Chem Chem Phys 13:15062–15068

    Article  Google Scholar 

  • Busch M, Ahlberg E, Panas I (2011b) Electrocatalytic oxygen evolution from water on a Mn(III–V) dimer model catalyst—A DFT perspective. Phys Chem Chem Phys 13:15069–15076

    Article  Google Scholar 

  • Busch M, Ahlberg E, Panas I (2013a) Validation of binuclear descriptor for mixed transition metal oxide supported electrocatalytic water oxidation. Catal Today 202:114–119

    Article  Google Scholar 

  • Busch M, Ahlberg E, Panas I (2013b) Water oxidation on MnOx and IrOx: why similar performance? J Phys Chem C 117:288–292

    Article  Google Scholar 

  • Calle-Vallejo F, Inoglu NG, Su H-Y, Martinez JI, Man IC, Koper MTM, Kitchin JR, Rossmeisl J (2013) Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem Sci 4:1245–1249

    Article  Google Scholar 

  • Calle-Vallejo F, Diaz-Morales O, Kolb M, Koper MTM (2015) Why Is bulk thermochemistry a good descriptor for the electrocatalytic activity of transition metal oxides? ACS Catal 5:869–873

    Article  Google Scholar 

  • Carugati A, Lodi G, Trasatti S (1981) Fractional reaction orders in oxygen evolution from acidic solutions at ruthenium oxide anodes. Mater Chem 6:255–266

    Article  Google Scholar 

  • Chang SH, Danilovic N, Chang K-C, Subbaraman R, Paulikas AP, Fong DD, Highland MJ, Baldo PM, Stamenkovic VR, Freeland JW, Eastman JA, Markovic NM (2014) Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nat Commun 5:4191–4199

    Google Scholar 

  • Chang SH, Connell JG, Danilovic N, Subbaraman R, Chang K-C, Stamenkovic VR, Markovic NM (2015) Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discuss 176:125–133

    Article  Google Scholar 

  • Chen JG, Menning CA, Zellner MB (2008) Monolayer bimetallic surfaces: experimental and theoretical studies of trends in electronic and chemical properties. Surf Sci Rep 63:201–254

    Article  Google Scholar 

  • Conway BE (1995) Electrochemical oxide film formation at noble metals as a surface-chemical process. Prog Surf Sci 49:331–452

    Article  Google Scholar 

  • Conway BE, Bourgault PL (1962) Significance of E.M.F. decay measurements. Applications to the nickel oxide electrode. Trans Faraday Soc 58:593–607

    Article  Google Scholar 

  • Conway BE, Bourgault PL (1959) The electrochemical behavior of the nickel – nickel oxide electrode part 1. Kinetics of self-discharge. Can J Chem 37:292–307

    Article  Google Scholar 

  • Conway BE, Salomon M (1964) Electrochemical reaction orders: applications to the hydrogen- and oxygen-evolution reactions. Electrochim Acta 9:1599–1615

    Article  Google Scholar 

  • Conway BE, Gileadi E (1962) Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage. Trans Faraday Soc 58:2493–2509

    Article  Google Scholar 

  • Conway BE, Bai L, Sattar MA (1987) Role of the transfer coefficient in electrocatalysis: applications to the H2 and O2 evolution reactions and the characterization of participating adsorbed intermediates. Int J Hydrogen Energy 12:607–621

    Article  Google Scholar 

  • Corrigan DA (1987) The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J Electrochem Soc 134:377–384

    Article  Google Scholar 

  • Corrigan DA, Conell RS, Fierro CA, Scherson DA (1987) In situ mossbauer study of redox processes in a composite hydroxide of iron and nickel. J Phys Chem 91:5009–5011

    Article  Google Scholar 

  • Crabtree GW, Dresselhaus MS, Buchanan MV (2004) The hydrogen economy. Phys Today 57:39–44

    Article  Google Scholar 

  • Damjanovic A, Dey A, Bockris JO’M (1966) Kinetics of oxygen evolution and dissolution on platinum electrodes. Electrochim Acta 11:791–814

    Article  Google Scholar 

  • Damjanovic A, Genshaw MA, Bockris JO’M (1967a) The role of hydrogen peroxide in oxygen reduction at platinum in H2SO4 solution. J Electrochem Soc 114:466–472

    Article  Google Scholar 

  • Damjanovic A, Genshaw MA, Bockris JO’M (1967b) The mechanism of oxygen reduction at platinum in alkaline solutions with special reference to H2O2. J Electrochem Soc 114:1107–1112

    Article  Google Scholar 

  • Danilovic N, Subbaraman R, Chang K-C, Chang SH, Kang Y, Snyder J, Paulikas AP, Strmcnik D, Kim YT, Myers D, Stamenkovic VR, Markovic NM (2014a) Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew Chem Int Ed 53:14016–14021

    Article  Google Scholar 

  • Danilovic N, Subbaraman R, Chang K-C, Chang SH, Kang YJ, Snyder J, Paulikas AP, Strmcnik D, Kim Y-T, Myers D, Stamenkovic VR, Markovic NM (2014b) Activity–stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J Phys Chem Lett 5:2474–2478

    Article  Google Scholar 

  • Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2:724–761

    Article  Google Scholar 

  • Desilvestro J, Corrigan DA, Weaver MJ (1986) Spectroelectrochemistry of thin nickel hydroxide films on gold using surface-enhanced raman spectroscopy. J Phys Chem 90:6408–6411

    Article  Google Scholar 

  • Diaz-Morales O, Calle-Vallejo F, de Munck C, Koper MTM (2013) Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism. Chem Sci 4:2334–2343

    Article  Google Scholar 

  • Dinga GP (1985) Hydrogen: the ultimate fuel and energy carrier. J Chem Ed 65:688–691

    Article  Google Scholar 

  • Doyle RL, Lyons MEG (2013a) Kinetics and mechanistic aspects of the oxygen evolution reaction at hydrous iron oxide films in base. J Electrochem Soc 160:H142–H154

    Article  Google Scholar 

  • Doyle RL, Lyons MEG (2013b) An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Phys Chem Chem Phys 15:5224–5237

    Article  Google Scholar 

  • Doyle RL, Lyons MEG (2014a) Redox and oxygen evolution properties of nafion and single walled carbon nanotube/hydrous iron oxide composite films. Electrocatalysis 5:114–124

    Article  Google Scholar 

  • Doyle RL, Lyons MEG (2014b) The mechanism of oxygen evolution at superactivated gold electrodes in aqueous alkaline solution. J Solid State Electrochem 18:3271–3286

    Article  Google Scholar 

  • Doyle RL, Godwin IJ, Brandon MP, Lyons MEG (2013) Redox and electrochemical water splitting catalytic properties of hydrated metal oxide electrodes. Phys Chem Chem Phys 15:13737–13783

    Article  Google Scholar 

  • Duan L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L (2012) A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nature 4:418–423

    Google Scholar 

  • Dumesic JA, Huber GW, Boudart M (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley, Wienheim, p 1445

    Google Scholar 

  • Egdell RG, Goodenough JB, Hamnett A, Naish CJ (1983) Electrochemistry of ruthenates part 1. Oxygen reduction on pyrochlore ruthenates. J Chem Soc Faraday Trans 79:893–912

    Article  Google Scholar 

  • El-Deab MS, Awad MI, Mohammad AM, Ohsaka T (2007) Enhanced water electrolysis: electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes. Electrochem Commun 9:2082–2087

    Article  Google Scholar 

  • Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt TJ (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4:3800–3821

    Article  Google Scholar 

  • Fachinotti E, Guerrini E, Tavares AC, Trasatti S (2007) Electrocatalysis of H2 evolution by thermally prepared ruthenium oxide. Effect of precursors: Nitrate vs. chloride. J Electroanal Chem 600:103–112

    Article  Google Scholar 

  • Farrow CL, Bediako DK, Surendranath Y, Nocera DG, Billinge SJL (2013) Intermediate-range structure of self-assembled cobalt-based oxygen-evolving catalyst. J Am Chem Soc 135:6403–6406

    Article  Google Scholar 

  • Frydendal R, Busch M, Halck NB, Paoli EA, Krtil P, Chorkendorff I, Rossmeisl J (2015) Enhancing activity for the oxygen evolution reaction: the beneficial interaction of gold with manganese and cobalt oxides. ChemCatChem 7:149–154

    Article  Google Scholar 

  • Galán-Mascarós JR (2015) Water oxidation at electrodes modified with earth-abundant transition-metal catalysts. ChemElectroChem 2:37–50

    Article  Google Scholar 

  • García-Mota M, Vojvodic A, Metiu H, Man IC, Su H-Y, Rossmeisl J, Nørskov JK (2011) Tailoring the activity for oxygen evolution electrocatalysis on Rutile TiO2(110) by transition-metal substitution. ChemCatChem 3:1607–1611

    Article  Google Scholar 

  • Gileadi E (1993) Electrode Kinetics, VCH, New York, pp 140–144

    Google Scholar 

  • Godwin IJ, Doyle RL, Lyons MEG (2014) The mechanism of oxygen reactions at porous oxide electrodes III. Water oxidation catalysis at RuO2/NiO mixed oxide electrodes. J Electrochem Soc 161:F906–F917

    Article  Google Scholar 

  • Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455

    Article  Google Scholar 

  • Gorlin Y, Chung C-J, Benck JD, Nordlund D, Seitz L, Weng T-C, Sokaras D, Clemens BM, Jaramillo TF (2014) Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation. J Am Chem Soc 136:4920–4926

    Article  Google Scholar 

  • Grätzel M (2005) Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem Lett 34:8–13

    Article  Google Scholar 

  • Greeley J, Markovic NM (2012) The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ Sci 5:9246–9256

    Article  Google Scholar 

  • Guerrini E, Chen H, Trasatti S (2007) Oxygen evolution on aged IrOx/Ti electrodes in alkaline solutions. J Solid State Electrochem 11:939–945

    Article  Google Scholar 

  • Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S (2014a) Defining the transfer coefficient in electrochemistry: an assessment (IUPAC Technical Report). Pure Appl Chem 86:245–258

    Google Scholar 

  • Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S (2014b) Definition of the transfer coefficient in electrochemistry (IUPAC Recommendations 2014). Pure Appl Chem 86:259–262

    Google Scholar 

  • Halck NB, Petrykin V, Krtil P, Rossmeisl J (2014) Beyond the volcano limitations in electrocatalysis - oxygen evolution reaction. Phys Chem Chem Phys 16:13682–13688

    Article  Google Scholar 

  • Hall DE (1983) Ni(OH)2-impregnated anodes for alkaline water electrolysis. J Electrochem Soc 130:317–321

    Article  Google Scholar 

  • Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J (2010) Electrochemical chlorine evolution at Rutile oxide 110 surfaces. Phys Chem Chem Phys 12:283–290

    Article  Google Scholar 

  • Harrington DA, van den Driessche P (2011) Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochim Acta 56:8005–8013

    Article  Google Scholar 

  • Häussinger P, Lohmüller R, Watson AM (2000) Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  • Hoare JP (1967) Oxygen electrode on noble metals. Adv Electrochem Electrochem Eng 6:201–288

    Google Scholar 

  • Hoare JP (1968) The electrochemistry of oxygen. Interscience, New York, pp 82–91

    Google Scholar 

  • Hrussanova A, Guerrini E, Trasatti S (2004) Thermally prepared Ti/RhOx electrodes IV: O2 evolution in acid solution. J Electranal Chem 564:151–157

    Article  Google Scholar 

  • Huynh M, Bediako DK, Nocera DG (2014) A functionally stable manganese oxide oxygen evolution catalyst in acid. J Am Chem Soc 136:6002–6010

    Article  Google Scholar 

  • Inoglu N, Kitchin JR (2011) Identification of sulfur-tolerant bimetallic surfaces using DFT parametrized models and atomistic thermodynamics. ACS Catal 1:399–407

    Article  Google Scholar 

  • Joya KS, Joya YF, Ocakoglu K, van de Krol R (2013) Water-splitting catalysis and solar fuel devices: artificial leaves on the move. Angew Chem Int Ed 52:10426–10437

    Article  Google Scholar 

  • Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    Article  Google Scholar 

  • Kanan MW, Yano J, Surendranath Y, Dinca M, Yachandra VK, Nocera DG (2010) Structure and valency of a cobalt−phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J Am Chem Soc 132:13692–13701

    Article  Google Scholar 

  • Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJ (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. J Angew Chem Int Ed 53:102–121

    Article  Google Scholar 

  • Kharche N, Hybersten MS, Muckerman JT (2014) Computational investigation of structural and electronic properties of aqueous interfaces of GaN, ZnO, and a GaN/ZnO alloy. Phys Chem Chem Phys 16:12057–12066

    Article  Google Scholar 

  • Kim S, Tryk DA, Antonio MR, Carr R, Scherson DJ (1994) In situ X-ray absorption fine structure studies of foreign metal ions in nickel hydrous oxide electrodes in alkaline electrolytes. Phys Chem 98:10269–10276

    Article  Google Scholar 

  • Kim TW, Choi K-S (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343:990–994

    Article  Google Scholar 

  • Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  • Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J (2012a) Water oxidation at hematite photoelectrodes: the role of surface states. J Am Chem Soc 134:4294–4302

    Article  Google Scholar 

  • Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012b) Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co-Pi”-coated hematite electrodes. J Am Chem Soc 134:16693–16700

    Article  Google Scholar 

  • Kobussen AGC, Broers GHJ (1981) The oxygen evolution on La0.5Ba0.5CoO3: theoretical impedance behaviour for a multi-step mechanism involving two adsorbates. J Electroanal Chem 126:221–240

    Article  Google Scholar 

  • Koper MTM (2011) Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem 660:254–260

    Article  Google Scholar 

  • Koper MTM (2013) Analysis of electrocatalytic reaction schemes: distinction between rate-determining and potential-determining steps. J Solid State Electrochem 17:339–344

    Article  Google Scholar 

  • Koper MTM, Heering HA (2010) In: Wiekowski JKNA (ed) Fuel cell science: theory, fundamentals and bio-catalysis. Wiley, New York, pp 71–110

    Chapter  Google Scholar 

  • Krasil’shchikov AI (1963) Intermediate stages in the anodic evolution of oxygen. Zh Fiz Khim 37:531

    Google Scholar 

  • Landon J, Demeter E, Inoglu N, Keturakis C, Wachs IE, Vasic R, Frenkel AI, Kitchin JR (2012) Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal 2:1793–1801

    Article  Google Scholar 

  • Lee DU, Kim BJ, Chen ZW (2013) One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst. J Mater Chem A 1:4754–4762

    Article  Google Scholar 

  • Lee SW, Carlton C, Risch M, Surendranath Y, Chen S, Furutsuki S, Yamada A, Nocera DG, Shao-Horn Y (2012) The nature of lithium battery materials under oxygen evolution reaction conditions. J Am Chem Soc 134:16959–16962

    Article  Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735

    Article  Google Scholar 

  • Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    Article  Google Scholar 

  • Liang YY, Wang HL, Zhou JG, Li YG, Wang J, Regier T, Dai HJ (2012) Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134:3517–3523

    Article  Google Scholar 

  • Liao P, Keith JA, Carter EA (2012) Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis. J Am Chem Soc 134:13296–13309

    Article  Google Scholar 

  • Lodi G, Sivieri E, De Battisti A, Trasatti S (1978) Ruthenium dioxide-based film electrodes. III. Effect of chemical composition and surface morphology on oxygen evolution in acid solutions. J Appl Electrochem 8:135–143

    Article  Google Scholar 

  • Louie MW, Bell AT (2013) An investigation of thin-film Ni−Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc 135:12329–12337

    Article  Google Scholar 

  • Lu X, Ng YH, Zhao C (2014) Gold nanoparticles embedded within mesoporous cobalt oxide enhance electrochemical oxygen evolution. ChemSusChem 7:82–86

    Article  Google Scholar 

  • Lyons MEG, Brandon MP (2009) Redox switching and oxygen evolution electrocatalysis in polymeric iron oxyhydroxide films. Phys Chem Chem Phys 11:2203–2217

    Article  Google Scholar 

  • Lyons MEG, Brandon MP (2010) A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. J Electroanal Chem 641:119–130

    Article  Google Scholar 

  • Lyons MEG, Burke LD (1987) Mechanism of oxygen reactions at porous oxide electrodes. Part 1. Oxygen evolution at ruthenium dioxide and ruthenium tin oxide (RuxSn1-xO2) electrodes in alkaline solution under vigorous electrolysis conditions. J Chem Soc Faraday Trans 83:299–321

    Article  Google Scholar 

  • Lyons MEG, Floquet S (2011) Mechanism of oxygen reactions at porous oxide electrodes. Part 2—Oxygen evolution at RuO2, IrO2 and IrxRu1-xO2 electrodes in aqueous acid and alkaline solution. Phys Chem Chem Phys 13:5314–5335

    Article  Google Scholar 

  • Lyons MEG, Doyle RL, Brandon MP (2011) Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base. Phys Chem Chem Phys 13:21530–21551

    Article  Google Scholar 

  • Lyons MEG, Russell L, O’Brien M, Doyle RL, Godwin I, Brandon MP (2012a) Redox switching and oxygen evolution at hydrous oxy-hydroxide modified nickel electrodes in aqueous alkaline solution: effect of hydrous oxide thickness and base concentration. Int J Electrochem Sci 7:2710–2763

    Google Scholar 

  • Lyons MEG, Cakara A, O’Brien P, Godwin I, Doyle RL (2012b) Redox, pH sensing and electrolytic water splitting properties of electrochemically generated nickel hydroxide thin films in aqueous alkaline solution. Int J Electrochem Sci 7:11768–11795

    Google Scholar 

  • Lyons MEG, Doyle RL, Fernandez D, Godwin IJ, Browne MP, Rovetta A (2014) The mechanism and kinetics of electrochemical water oxidation at oxidised metal and metal oxide electrodes. Part 2. The surfaquo group mechanism. A mini review. Electrochem Commun 45:56–59

    Article  Google Scholar 

  • Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3:1159–1165

    Article  Google Scholar 

  • Marinia S, Salvi P, Nelli P, Pesentia R, Villa M, Berrettoni M, Zangaric G, Kiros Y (2012) Advanced alkaline water electrolysis. Electrochim Acta 82(384–391)

    Google Scholar 

  • Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:121–229

    Article  Google Scholar 

  • Marx D, Tuckerman ME, Hutter J, Parrinello M (1999) The nature of the hydrated excess proton in water. Nature 397:601–604

    Article  Google Scholar 

  • Matsumoto Y, Sato E (1986) Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater Chem Phys 14:397–426

    Article  Google Scholar 

  • Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822

    Article  Google Scholar 

  • May KJ, Carlton CE, Stoerzinger KA, Risch M, Suntivich J, Lee Y-L, Grimaud A, Shao-Horn Y (2012) The influence of oxygen evolution upon water oxidation on the surface of perovskite oxide catalysts. J Phys Chem Lett 3:3264–3270

    Article  Google Scholar 

  • McAlpin JG, Surendranath Y, Dinca M, Stich TA, Stoian SA, Casey WH, Nocera DG, Britt RD (2010) EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J Am Chem Soc 132:6882–6883

    Article  Google Scholar 

  • McCrory CCL, Jung SH, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987

    Article  Google Scholar 

  • McDonald AR, Que L (2011) Iron–oxo complexes: elusive iron(V) species identified. Nature 3:761–762

    Google Scholar 

  • McDonald JJ, Conway BE (1962) The role of surface films in the kinetics of oxygen evolution at Pd + Au alloy electrodes. Proc Roy Soc Lond A 269:419–440

    Article  Google Scholar 

  • Merrill MD, Dougherty RC (2008) Metal oxide catalysts for the evolution of O2 from H2O. J Phys Chem C 112:3655–3666

    Article  Google Scholar 

  • Meyer RE (1960) Cathodic processes on passive zirconium. J Electrochem Soc 107:847–853

    Article  Google Scholar 

  • Michas A, Andolfatto F, Lyons MEG, Durand R (1992) Gas evolution reactions at conductive metallic oxide electrodes for solid polymer electrolyte water electrolysis. Key Eng Mater 72–74:535–549

    Article  Google Scholar 

  • Mohammad AM, Awad MI, El-Deab MS, Okajima T, Ohsaka T (2008) Electrocatalysis by nanoparticles: optimisation of the loading level and operating pH for the oxygen evolution at crystallographically orientated manganese oxide nanorods modified electrodes. Electrochim Acta 53:4351–4358

    Article  Google Scholar 

  • Montoya JH, Garcia-Mota M, Nørskov JK, Vojvodic A (2015) Theoretical evaluation of the surface electrochemistry of perovskites with promising photon absorption properties for solar water splitting. Phys Chem Chem Phys 17:2634–2640

    Article  Google Scholar 

  • Nocera DG (2012) The artificial leaf. Acc Chem Res 45:767–776

    Article  MathSciNet  Google Scholar 

  • Nørskov JK, Bligaard T, Hvolbaek B, Abild-Petersen F, Chorkendorff I, Christensen CH (2008) The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev 37:2163–2171

    Article  Google Scholar 

  • Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Article  Google Scholar 

  • Novell-Leruth G, Carchini G, Lópeza N (2013) On the properties of binary rutile MO2 compounds, M = Ir, Ru, Sn, and Ti: A DFT study. J Chem Phys 138:194706–194715

    Article  Google Scholar 

  • Nowicka AM, Hasse U, Sievers G, Donten M, Stojek Z, Fletcher S, Scholz F (2010) Selective knockout of gold active sites. Angew Chem Int Ed 49:3006–3009

    Article  Google Scholar 

  • O’Grady W, Iwakura C, Huang J, Yeager E (1974) In: Breiter MW (ed) Proceedings of the symposium on electrocatalysis. The Electrochemical Society Inc., Pennington, NJ, p 286

    Google Scholar 

  • Ohi J (2005) Hydrogen energy cycle: an overview. J Mater Res 20:3180–3187

    Article  Google Scholar 

  • O’Sullivan EJM, Burke LD (1990) Kinetics of oxygen gas evolution on hydrous rhodium oxide films. J Electrochem Soc 137:466–471

    Article  Google Scholar 

  • Parsons R (1951) General equations for the kinetics of electrode processes. Trans Faraday Soc 47:1332–1344

    Article  Google Scholar 

  • Parsons R (1958) Rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053–1063

    Article  Google Scholar 

  • Parsons R (1961) In: Delahay P (ed) Advances in electrochemistry and electrochemical engineering, vol 1. Interscience, New York, p 1

    Google Scholar 

  • Petrykin V, Macounova K, Shlyakhtin OA, Krtil P (2010) Tailoring the selectivity for electrocatalytic oxygen evolution on ruthenium oxides by zinc substitution. Angew Chem Int Ed 49:4813–4815

    Article  Google Scholar 

  • Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions, 2nd edn. National Association of Corrosion Engineers, Houston, TX

    Google Scholar 

  • Rebouillat S, Lyons MEG, Brandon MP, Doyle RL (2011) Paving the way to the integration of smart nanostructures Part 2 - Nanostructured metal oxides for electrocatalysis and energy conversion. Int J Electrochem Sci 6:5830–5917

    Google Scholar 

  • Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2:1765–1772

    Article  Google Scholar 

  • Rios E, Chartier P, Gautier JL (1999) Oxygen evolution electrocatalysis in alkaline medium at thin MnxCo3-xO4 (0 ≤ x ≤ 1) spinel films on glass/SnO2:F prepared by spray pyrolysis. Solid State Sci 1:267–277

    Article  Google Scholar 

  • Rossmeisl J (2013) In: Schlogl R (ed) Chemical energy storage. De Gruyter Graduate, Berlin, pp 151–162

    Google Scholar 

  • Rossmeisl J, Logadottir A, Nørskov JK (2005) Electrolysis of water on (oxidized) metal surfaces. Chem Phys 319:178–184

    Article  Google Scholar 

  • Rossmeisl J, Qu Z-W, Zhu H, Kroes G-J, Nørskov JK (2007a) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83–89

    Article  Google Scholar 

  • Rossmeisl J, Dimitrievski K, Siegbahn P, Nørskov JK (2007b) Comparing electrochemical and biological water splitting. J Phys Chem C 111:18821–18823

    Article  Google Scholar 

  • Rossmeisl J, Karlberg GS, Jaramillo T, Norskov JK (2008) Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss 140:337–346

    Article  Google Scholar 

  • Ruban AV, Skriver HL, Nørskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59:15990–16000

    Article  Google Scholar 

  • Ruetschi P, Delahay P (1955) Potential at zero charge for reversible and ideal polarized electrodes. J Chem Phys 23:697–699

    Article  Google Scholar 

  • Sabatier P (1911) Hydrogenation and dehydrogenation by catalysis. Ber Dtsch Chem Ges 44:1984–2001

    Article  Google Scholar 

  • Sato N (1998) Electrochemistry at metal and semiconductor electrodes. Elsevier, Amsterdam, pp 181–184

    Google Scholar 

  • Schlogl R (2010) The role of chemistry in the energy challenge. ChemSusChem 3:209–222

    Article  Google Scholar 

  • Schwab GM (1981) In: Anderson JR, Boudart M (eds) Catalysis – science and technology, vol 2. Springer, Berlin, p 4

    Google Scholar 

  • Schweitzer GK, Pesterfield LL (2010) The aqueous chemistry of the elements. Oxford University Press, Oxford

    Google Scholar 

  • Shen X, Small YA, Wang J, Allen PB, Fernandez-Serra MV, Hybertsen MS, Muckerman JT (2010) Photocatalytic water oxidation at the GaN (1010) – water interface. J Phys Chem C 114:13695–13704

    Article  Google Scholar 

  • Sheng WC, Gasteiger HA, Shao-Horn Y (2010) Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc 157:B1529–B1536

    Article  Google Scholar 

  • Singh NK, Tiwari SK, Anitha KL, Singh RN (1996) Electrocatalytic properties of spinel-type MnxFe3–xO4 synthesized below 100°C for oxygen evolution in KOH solutions. J Chem Soc Faraday Trans 92:2397–2400

    Article  Google Scholar 

  • Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, Trudel S, Berlinguette CP (2013a) Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340:60–63

    Article  Google Scholar 

  • Smith RDL, Prévot MS, Fagan RD, Trudel S, Berlinguette CP (2013b) Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J Am Chem Soc 135:11580–11586

    Article  Google Scholar 

  • Somorjai GA (1996) Modern surface science and surface technologies: an introduction. Chem Rev 96:1223–1235

    Article  Google Scholar 

  • Su H-Y, Gorlin Y, Man IC, Calle-Vallejo F, Nørskov JK, Jaramillo TF, Rossmeisl J (2012) Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys Chem Chem Phys 14:14010–14022

    Article  Google Scholar 

  • Subbaraman R, Tripkovic D, Chang K-C, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater 11:550–557

    Article  Google Scholar 

  • Sun K, Kohyama M, Tanaka S, Takeda S (2012) Theoretical study of atomic oxygen on gold surface by Hückel theory and DFT calculations. J Phys Chem A 116:9568–9573

    Article  Google Scholar 

  • Suntivich J, May KJ, Gasteiger H, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  Google Scholar 

  • Surendranath Y, Nocera DG (2012) Progress. In: Karlin KD (ed) Inorganic chemistry, vol 57. Wiley, New York, pp 505–560

    Google Scholar 

  • Surendranath Y, Kanan MW, Nocera DG (2010) Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc 132:16501–16509

    Article  Google Scholar 

  • Tafel J (1904) Polarization in cathodic hydrogen evolution. Z Phys Chem 50:641–712

    Google Scholar 

  • Taylor HS (1925) A theory of the catalytic surface. Proc Roy Soc Lond A 108:105–111

    Article  Google Scholar 

  • Terezo AJ, Bisquert J, Pereira EC, Garcia-Belmonte G (2001) Separation of transport, charge storage and reaction processes of porous electrocatalytic IrO2 and IrO2/Nb2O5 electrodes. J Electroanal Chem 508:59–69

    Article  Google Scholar 

  • Thomas JGN (1961) Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals. Trans Faraday Soc 57:1603–1611

    Article  Google Scholar 

  • Trasatti S (1980) Electrocatalysis by oxides - attempt at a unifying approach. J Electroanal Chem 111:125–131

    Article  Google Scholar 

  • Trasatti S (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta 29:1503–1512

    Article  Google Scholar 

  • Trasatti S (1994) In: Lipkowski J, Ross PN (eds) Electrochemistry of novel materials. VCH, New York, pp 207–295

    Google Scholar 

  • Tributsch H (2008) Photovoltaic hydrogen generation. Int J Hydrogen Energy 33:5911–5930

    Article  Google Scholar 

  • Trotochaud L, Ranney JK, Williams KN, Boettcher SW (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 134:17253–17261

    Article  Google Scholar 

  • Trotochaud L, Young SL, Ranney JK, Boettcher SW (2014) Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J Am Chem Soc 136:6744–6753

    Article  Google Scholar 

  • Tuckerman M, Laasonen K, Sprik M, Parrinello M (1995) Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J Chem Phys 103:150–161

    Article  Google Scholar 

  • Turner JA (2004) Sustainable hydrogen production. Science 305:972–974

    Article  Google Scholar 

  • Valdés Á, Qu Z-W, Kroes G-J, Rossmeisl J, Nørskov JK (2008) Oxidation and photo-oxidation of water on TiO2 surface. J Phys Chem C 112:9872–9879

    Article  Google Scholar 

  • Valdés Á, Brillet J, Grätzel M, Gudmundsdóttir H, Hansen HA, Jónsson H, Klüpfel P, Kroes G-J, Le Formal F, Man IC, Martins RS, Nørskov JK, Rossmeisl J, Sivula K, Vojvodicf A, Zäch M (2012) Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. Phys Chem Chem Phys 14:49–70

    Article  Google Scholar 

  • Vassilev P, Koper MTM, van Santen RA (2002) Ab initio molecular dynamics of hydroxyl-water coadsorption on Rh(111). Chem Phys Lett 359:337–342

    Article  Google Scholar 

  • Viswanathan V, Pickrahn KL, Luntz AC, Bent SF, Nørskov JK (2014) Nanoscale limitations in metal oxide electrocatalysts for oxygen evolution. Nano Lett 14:5853–5857

    Article  Google Scholar 

  • Wang L, Zhao X, Lu Y, Xu M, Zhang D, Ruoff RS, Stevenson KJ, Goodenough JB (2011) CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. J Electrochem Soc 158:A1379–A1382

    Article  Google Scholar 

  • Wang L-P, Wu Q, Van Voorhis T (2010) Acid-base mechanism for ruthenium water oxidation catalysts. Inorg Chem 49:4543–4553

    Article  Google Scholar 

  • Willems H, Kobussen AGC, De Wit JHW, Broers GHJ (1984) The oxygen evolution reaction on cobalt. Part 1. Reaction order experiments and impedance measurements. J Electroanal Chem 170:227–242

    Article  Google Scholar 

  • Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133:5587–5593

    Article  Google Scholar 

  • Yeo BS, Bell AT (2012) In situ raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C 116:8394–8400

    Article  Google Scholar 

  • Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326

    Article  Google Scholar 

  • Zhou L (2005) Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev 9:395–408

    Article  Google Scholar 

Download references

Acknowledgements

The research described here has emanated in part from projects conducted with the financial support of Science Foundation Ireland (SFI) under grant number SFI/10/IN.1/I2969. RLD also wishes to acknowledge the Irish Research Council (IRC) for a Government of Ireland Postdoctoral Fellowship GOIPD/2014/120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Doyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Doyle, R.L., Lyons, M.E.G. (2016). The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design. In: Giménez, S., Bisquert, J. (eds) Photoelectrochemical Solar Fuel Production. Springer, Cham. https://doi.org/10.1007/978-3-319-29641-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29641-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29639-5

  • Online ISBN: 978-3-319-29641-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics