Skip to main content

Cerebral Hemorrhage in Newborns

  • Reference work entry
  • First Online:
Neonatology

Abstract

Hemorrhagic lesions of the central nervous system (CNS) occur during the fetal, perinatal, and postnatal period. Due to the timing of the hemorrhage and the vulnerability of the developing brain, hemorrhagic lesions are associated with specific morbidity and mortality.

Germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH) is still a common and serious condition in premature infants. Especially a large GMH-IVH, often complicated by posthemorrhagic ventricular dilation or associated with a unilateral parenchymal hemorrhage, is associated with an increased risk of adverse neurologic sequelae.

The widespread use of cranial ultrasonography since the early 1980s has shown a gradual decrease in the incidence of GMH-IVH and has helped with the identification of risk factors and timing of the lesion. The increased use of magnetic resonance imaging (MRI) has contributed to better define the site and extent of the lesion and to visualize associated white matter (WM) damage as well as associated cerebellar hemorrhages.

Hemorrhagic lesions of the CNS in the fetal period are associated with vascular malformation, thrombophilic disorders, and rarely brain malignancies. Perinatally acquired hemorrhagic CNS lesions in the full-term infant are associated with sinovenous thrombosis or traumatic parenchymal hemorrhage related to assisted vaginal deliveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 479.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CSF:

Cerebrospinal fluid

CSVT:

Cerebral sinovenous thrombosis

CT:

Computed tomography

cUS:

Cranial ultrasound

DQ:

Developmental quotient

DRIFT:

Drainage intervention fibrinolytic therapy

ECMO:

Extracorporeal membrane oxygenation

GMH-IVH:

Germinal matrix hemorrhage-intraventricular hemorrhage

HPI:

Hemorrhagic parenchymal infarction

iNO:

Inhaled nitric oxide

IPL:

Intraparenchymal Lesion

MRI:

Magnetic resonance imaging

NIRS:

Near-infrared spectroscopy

NAITP:

Neonatal alloimmune thrombocytopenia

PVHI:

Periventricular hemorrhagic infarction

PVL:

Periventricular leukomalacia

PLAI:

Platelet surface antigen

PLIC:

Posterior limb of the internal capsule

PHVD:

Posthemorrhagic ventricular dilatation

VI:

Venous infarction

VM:

Ventriculomegaly

References

  • Alderliesten T, Lemmers PM, Smarius JJ et al (2013) Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J Pediatr 162(4):698–704

    Article  PubMed  Google Scholar 

  • Andre P, Thebaud B, Delavaucoupet J et al (2001) Late-onset cystic periventricular leukomalacia in premature infants: a threat until term. Am J Perinatol 18:79–86

    Article  CAS  PubMed  Google Scholar 

  • Armstrong-Wells J, Johnston SC, Wu YW et al (2009) Prevalence and predictors of perinatal hemorrhagic stroke: results from the Kaiser pediatric stroke study. Pediatrics 123:823–828

    Article  PubMed  Google Scholar 

  • Barnette AR, Myers BJ, Berg CS, Inder TE (2010) Sodium intake and intraventricular hemorrhage in the preterm infant. Ann Neurol 67(6):817–823

    CAS  PubMed  Google Scholar 

  • Barrington KJ, Finer NN (2010) Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev CD000509

    Google Scholar 

  • Bassan H, Benson CB, Limperopoulos C et al (2006) Ultrasonographic features and severity scoring of periventricular hemorrhagic infarction in relation to risk factors and outcome. Pediatrics 117:2111–2118

    Article  PubMed  Google Scholar 

  • Bassan H, Limperopoulos C, Visconti K et al (2007) Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. Pediatrics 120:785–792

    Article  PubMed  Google Scholar 

  • Bassan H, Eshel R, Golan I, External Ventricular Drainage Study Investigators et al (2012) Timing of external ventricular drainage and neurodevelopmental outcome in preterm infants with posthemorrhagic hydrocephalus. Eur J Paediatr Neurol 16(6):662–670

    Article  PubMed  Google Scholar 

  • Bates S, Odd D, Luyt K et al (2015) Superior vena cava flow and intraventricular haemorrhage in extremely preterm infants. J Matern Fetal Neonatal Med 30:1–7

    Google Scholar 

  • Batton DG, Holtrop P, Dewitte D et al (1994) Current gestational age-related incidence of major intraventricular hemorrhage. J Pediatr 125:623–625

    Article  CAS  PubMed  Google Scholar 

  • Baud O, Foix-L’Helias L, Kaminski M et al (1999) Antenatal glucocorticoid treatment and cystic periventricular leukomalacia in very premature infants. N Engl J Med 341:1190–1196

    Article  CAS  PubMed  Google Scholar 

  • Beaino G, Khoshnood B, Kaminski M et al (2011) Predictors of the risk of cognitive deficiency in very preterm infants: the EPIPAGE prospective cohort. Acta Paediatr 100:370–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Beecher DJ (2002) The Bacillus cereus group. In: Sussman M (ed) Molecular medical microbiology. Academic, San Diego, pp 1161–1181

    Chapter  Google Scholar 

  • Benavente-Fernández I, Lubián-López SP, Jiménez-Gómez G et al (2015) Low-voltage pattern and absence of sleep-wake cycles are associated with severe hemorrhage and death in very preterm infants. Eur J Pediatr 174(1):85–90

    Article  PubMed  Google Scholar 

  • Beverley D, Pitts-Tucker T, Congdon P et al (1985) Prevention of intraventricular haemorrhage by fresh frozen plasma. Arch Dis Child 60(8):710–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolisetty S, Dhawan A, Abdel-Latif M, New South Wales and Australian Capital Territory Neonatal Intensive Care Units’ Data Collection et al (2014) Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics 133:55–62

    Article  PubMed  Google Scholar 

  • Braun V, Hobbie S, Ondraczek R (1992) Serratia marcescens forms a new type of cytolysin. FEMS Microbiol Lett 100(1–3):299–305

    Article  CAS  PubMed  Google Scholar 

  • Brouwer AJ, Groenendaal F, van Haastert IC et al (2008) Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for post-hemorrhagic ventricular dilatation. J Pediatr 152:648–654

    Article  PubMed  Google Scholar 

  • Brouwer MJ, de Vries LS, Groenendaal F et al (2012) New reference values for the neonatal cerebral ventricles. Radiology 262(1):224–233

    Article  PubMed  Google Scholar 

  • Bulas D, Glass P (2005) Neonatal ECMO: neuroimaging and neurodevelopmental outcome. Semin Perinatol 29:58–65

    Article  PubMed  Google Scholar 

  • Bulas DI, Glass P, O’Donnell RM (1995) Neonates treated with ECMO: predictive value of early CT and US neuroimaging findings on short-term neurodevelopmental outcome. Radiology 195:407–412

    Article  CAS  PubMed  Google Scholar 

  • Burstein J, Papile L, Burstein R (1979) Intraventricular hemorrhage in premature newborns: a prospective study with CT. Am J Radiol 132:631–635

    CAS  Google Scholar 

  • Bussel JB, Sola-Visner M (2009) Current approaches to the evaluation and management of the fetus and neonate with immune thrombocytopenia. Semin Perinatol 33:35–42

    Article  PubMed  Google Scholar 

  • Bussel JB, Zavusky MR, Berkowitz RL, McFarland JG (1997) Fetal alloimmune thrombocytopenia. N Engl J Med 337:22–26

    Article  CAS  PubMed  Google Scholar 

  • Chadwick LM, Pemberton PJ, Kurinczuk JJ (1996) Neonatal subgaleal haematoma: associated risk factors, complications and outcome. J Paediatr Child Health 32:228–232

    Article  CAS  PubMed  Google Scholar 

  • Chalak LF, Sikes NC, Mason MJ, Kaiser JR (2011) Low-voltage aEEG as predictor of intracranial hemorrhage in preterm infants. Pediatr Neurol 44(5):364–369

    Article  PubMed  PubMed Central  Google Scholar 

  • Chamnanvanakij S, Rollins N, Perlman JM (2002) Subdural hematoma in term infants. Pediatr Neurol 26:301–314

    Article  PubMed  Google Scholar 

  • Chang HY, Peng CC, Kao HA et al (2007) Neonatal subgaleal hemorrhage: clinical presentation, treatment, and predictors of poor prognosis. Pediatr Int 49:903–907

    Article  PubMed  Google Scholar 

  • Correa F, Enríquez G, Rosselló J et al (2004) Posterior fontanelle sonography: an acoustic window into the neonatal brain. AJNR Am J Neuroradiol 25:1274–1282

    PubMed  PubMed Central  Google Scholar 

  • Counsell SJ, Dyet LE, Larkman DJ et al (2007) Thalamo-cortical connectivity in children born preterm mapped using probabilistic magnetic resonance tractography. Neuroimage 34:896–904

    Article  PubMed  Google Scholar 

  • Cowan FM, de Vries LS (2005) The internal capsule in neonatal imaging. Semin Fetal Neonatal Med 10:461–474

    Article  PubMed  Google Scholar 

  • Crowther CA, Harding JE (2007) Repeat doses of prenatal corticosteroids for women at risk of preterm birth for preventing neonatal respiratory disease. Cochrane Database Syst Rev 18(3):CD003935

    Google Scholar 

  • Crowther CA, Hiller JE, Doyle LW et al (2003) Effect of magnesium sulfate given for neuroprotection before preterm birth. JAMA 290:2669–2676

    Article  CAS  PubMed  Google Scholar 

  • Crowther CA, Crosby DD, Henderson-Smart DJ (2010) Cochrane Database Syst Rev 20(1), CD000229. https://doi.org/10.1002/14651858.CD000229.pub2

    Article  Google Scholar 

  • Dale ST, Coleman LT (2002) Neonatal alloimmune thrombocytopenia: antenatal and postnatal imaging findings in the pediatric brain. AJNR Am J Neuroradiol 23:1457–1465

    PubMed  PubMed Central  Google Scholar 

  • Dalton J, Dechert RE, Sarkar S (2015) Assessment of association between rapid fluctuations in serum sodium and intraventricular hemorrhage in hypernatremic preterm infants. Am J Perinatol 32(8):795–802

    Article  PubMed  Google Scholar 

  • Dani C, Bertini G, Pezzati M, IntraVentricular Ibuprofen Study Group et al (2005) Prophylactic ibuprofen for the prevention of intraventricular hemorrhage among preterm infants: a multicenter, randomized study. Pediatrics 115:1529–1535

    Article  PubMed  Google Scholar 

  • Dani C, Poggi C, Ceciarini F et al (2009) Coagulopathy screening and early plasma treatment for the prevention of intraventricular hemorrhage in preterm infants. Transfusion 49(12):2637–2644

    Article  PubMed  Google Scholar 

  • Davies MW, Swaminathan M, Chuang SI, Betheras FR (2001) Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child Fetal Neonatol Ed 82:F219–F223

    Google Scholar 

  • de Mol AC, Gerrits LC, van Heijst AF, Straatman H (2008) Intravascular volume administration: a contributing risk factor for intracranial hemorrhage during extracorporeal membrane oxygenation? Pediatrics 121:e1599–e1603

    Article  PubMed  Google Scholar 

  • De Vries LS, Groenendaal F, Eken P et al (1999) Asymmetrical myelination of the posterior limb of the internal capsule: an early predictor of hemiplegia. Neuropediatrics 30:314–319

    Article  PubMed  Google Scholar 

  • de Vries LS, Rademaker KJ, Roelants-van Rijn AM (2001) Unilateral haemorrhagic parenchymal infarction in the preterm infant. Eur J Pediatr Neurol 5:139–149

    Article  Google Scholar 

  • de Vries LS, Liem KD, van Dijk K et al (2002) Early versus late treatment of posthaemorrhagic ventricular dilatation: results of a retrospective study from five neonatal intensive care units in the Netherlands. Acta Paediatr 91:212–217

    Article  PubMed  Google Scholar 

  • de Vries LS, Koopman C, Groenendaal F et al (2009) COL4A1 mutation in two preterm siblings with antenatal onset of parenchymal hemorrhage. Ann Neurol 65:12–18

    Article  PubMed  CAS  Google Scholar 

  • de Vries LS, Groenendaal F, Liem KD, Heep A, Brouwer AJ, van ’t Verlaat E, Benavente-Fernández I, van Straaten HL, van Wezel-Meijler G, Smit BJ, Govaert P, Woerdeman PA, Whitelaw A, ELVIS study group (ed) (2018) Treatment thresholds for intervention in posthaemorrhagic ventricular dilation: a randomised controlled trial. Arch Dis Child Fetal Neonatal. https://doi.org/10.1136/archdischild-2017-314206. pii: fetalneonatal-2017-314206 [Epub ahead of print]

  • Dolfin T, Skidmore MB, Fong KW et al (1983) Incidence, severity and timing of subependymal and intraventricular hemorrhages in preterm infants born in a perinatal unit as detected by serial real-time ultrasound. Pediatrics 71:541–546

    CAS  PubMed  Google Scholar 

  • Doyle LW, Crowther CA, Middleton P (2009) Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev 21(1), CD004661

    Google Scholar 

  • Drayton MR, Skidmore R (1987) Vasoactivity of the major intracranial arteries in newborn infants. Arch Dis Child 62:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudink J, Lequin M, Weisglas-Kuperus N et al (2008) Venous subtypes of preterm periventricular haemorrhagic infarction. Arch Dis Child Fetal Neonatal Ed 93:F201–F206

    Article  CAS  PubMed  Google Scholar 

  • Duppre P, Sauer H, Giannopoulou EZ et al (2015) Cellular and humoral coagulation profiles and occurrence of IVH in VLBW and ELBW infants. Early Hum Dev 91:695–700

    Article  CAS  PubMed  Google Scholar 

  • Ecury-Goossen GM, Dudink J, Lequin M et al (2010) The clinical presentation of preterm cerebellar haemorrhage. Eur J Pediatr 169(10):1249–1253

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Ganzoury MM, El-Farrash RA, Saad AA et al (2014) Antenatal administration of vitamin K1: relationship to vitamin K-dependent coagulation factors and incidence rate of periventricular-intraventricular hemorrhage in preterm infants; Egyptian randomized controlled trial. J Matern Fetal Neonatal Med 27(8):816–820

    Article  CAS  PubMed  Google Scholar 

  • Fabres J, Carlo WA, Phillips V et al (2007) Both extremes of arterial carbon dioxide pressure and the magnitude of fluctuations in arterial carbon dioxide pressure are associated with severe intraventricular hemorrhage in preterm infants. Pediatrics 119:299–305

    Article  PubMed  Google Scholar 

  • Felderhoff-Mueser U, Buhrer C, Groneck P et al (2003) Soluble Fas (CD95/Apo-1), soluble Fas ligand and activated Capspase 3 in the cerebrospinal fluid of infants with posthemorrhagic and nonhemorrhagic hydrocephalus. Pediatr Res 54:659–664

    Article  CAS  PubMed  Google Scholar 

  • Fernell E, Hagberg G, Hagberg B (1993) Infantile hydrocephalus in preterm, low-birth-weight infants: a nationwide Swedish cohort study 1979–1988. Acta Paediatr 82:45–48

    Article  CAS  PubMed  Google Scholar 

  • Forman K (2014) Coagulopathy in newborns with hypoxic ischemic encephalopathy (HIE) treated with therapeutic hypothermia: a retrospective case-control study. BMC Pediatr 14:277

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fowlie PW, Davis PG (2010) Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. Cochrane Database Syst Rev 7(7):CD000174

    Google Scholar 

  • Gannon CM, Kornhauser MS, Gross GW et al (2001) When combined, early bedside head ultrasound and electroencephalography predict abnormal computerized tomography or magnetic resonance brain images obtained after extracorporeal membrane oxygenation treatment. J Perinatol 21:451–455

    Article  CAS  PubMed  Google Scholar 

  • Ghazi-Birry HS, Brown WR, Moody DM et al (1997) Human germinal matrix: venous origin of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol 18:219–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gleissner M, Jorch G, Avenarius S (2000) Risk factors for intraventricular hemorrhage in a birth cohort of 3721 premature infants. J Perinat Med 28:104–110

    CAS  PubMed  Google Scholar 

  • Göpel W, Härtel C, Ahrens P et al (2006) Interleukin-6-174-genotype, sepsis and cerebral injury in very low birth weight infants. Genes Immun 7:65–68

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Howard S, Hope PL, Reynolds EO (1987) Periventricular intraparenchymal cerebral haemorrhage in preterm infants: the role of venous infarction. J Pathol 151:197–202

    Article  CAS  PubMed  Google Scholar 

  • Govaert P, Vanhaesebrouck P, de Praeter C (1992) Traumatic neonatal intracranial bleeding and stroke. Arch Dis Child 67:840–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gram M, Sveinsdottir S, Ruscher K, Hansson SR, Cinthio M, Akerström B, Ley D (2013) Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflammation 10:100. https://doi.org/10.1186/1742-2094-10-100

  • Hamrick SE, Miller SP, Leonard C et al (2004) Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 145:593–599

    Article  PubMed  Google Scholar 

  • Hanigan WC, Powell FC, Miller TC, Wright RM (1995) Symptomatic intracranial hemorrhage in full-term infants. Childs Nerv Syst 11:698–707

    Article  CAS  PubMed  Google Scholar 

  • Haque KN, Hayes AM, Ahmed Z et al (2008) Caesarean or vaginal delivery for preterm very-low-birth weight (</=1,250 g) infant: experience from a district general hospital in UK. Arch Gynecol Obstet 277:207–212

    Article  PubMed  Google Scholar 

  • Hardart GE, Fackler JC (1999) Predictors of intracranial hemorrhage during neonatal extracorporeal membrane oxygenation. J Pediatr 134:156–159

    Article  CAS  PubMed  Google Scholar 

  • Harding DR, Dhamrait S, Whitelaw A et al (2004) Does interleukin-6 genotype influence cerebral injury or developmental progress after preterm birth? Pediatrics 114:941–947

    Article  PubMed  Google Scholar 

  • Härtel C, König I, Köster S et al (2006) Genetic polymorphisms of hemostasis genes and primary outcome of very low birth weight infants. Pediatrics 118:683–689

    Article  PubMed  Google Scholar 

  • Heep A, Behrendt D, Nitsch P et al (2003) Increased interleukin-6 serum levels are associated with severe intraventricular hemorrhage in extremely premature infants. Arch Dis Child 88:F501–F504

    Article  CAS  Google Scholar 

  • Heep A, Stoffel-Wagner B, Bartmann P et al (2004a) Vascular endothelial growth factor and transforming growth factor-beta1 are highly expressed in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus. Pediatr Res 56:768–774

    Article  CAS  PubMed  Google Scholar 

  • Heep A, Schaller K, Rittmann N et al (2004b) Multiple brain abscesses in an extremely preterm infant: treatment surveillance with interleukin-6 in the CSF. Eur J Pediatr 163:44–45

    Article  PubMed  Google Scholar 

  • Herbst A, Källén K (2007) Influence of mode of delivery on neonatal mortality and morbidity in spontaneous preterm breech delivery. Eur J Obstet Gynecol Reprod Biol 133:25–29

    Article  PubMed  Google Scholar 

  • Heuchan AM, Evans N, Henderson Smart DJ, Simpson JM (2002) Perinatal risk factors for major intraventricular haemorrhage in the Australian and New Zealand Neonatal Network, 1995–97. Arch Dis Child Fetal Neonatal Ed 86(2):F86–F90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmeyr GJ, Hannah ME (2003) Planned caesarean section for term breech delivery. Cochrane Database Syst Rev 3, CD000166

    Google Scholar 

  • Holberton JR, Drew SM, Mori R, Konig K (2012) The diagnostic value of a single measurement of superior vena cava flow in the first 24 h of life in very preterm infants. Eur J Pediatr 171:1489–1495

    Article  PubMed  Google Scholar 

  • Ingram MC, Huguenard AL, Miller BA, Chern JJ (2014) Poor correlation between head circumference and cranial ultrasound findings in premature infants with intraventricular hemorrhage. J Neurosurg Pediatr 14:184–189

    Article  PubMed  Google Scholar 

  • Jiménez AJ, García-Verdugo JM, González CA et al (2009) Disruption of the neurogenic niche in the subventricular zone of postnatal hydrocephalic hyh mice. J Neuropathol Exp Neurol 68(9):1006–1020. https://doi.org/10.1097/NEN.0b013e3181b44a5a

    Article  PubMed  Google Scholar 

  • Jocelyn LJ, Casiro OG (1992) Neurodevelopmental outcome of term infants with intraventricular hemorrhage. Am J Dis Child 146:194–197

    CAS  PubMed  Google Scholar 

  • Kaiser A, Whitelaw A (1985) Cerebrospinal fluid pressure during posthaemorrhagic ventricular dilatation in newborn. Arch Dis Child 60:920–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamphuis MM, Paridaans NP, Porcelijn L, Lopriore E, Oepkes D (2014) Incidence and consequences of neonatal alloimmune thrombocytopenia: a systematic review. Pediatrics 133:715–721

    Article  PubMed  Google Scholar 

  • Kennedy CR, Ayers S, Campbell MJ et al (2001) Randomized, controlled trial of acetazolamide and furosemide in posthemorrhagic ventricular dilation in infancy: follow-up at 1 year. Pediatrics 108:597–607

    Article  CAS  PubMed  Google Scholar 

  • Kersbergen K, de Vries LS, van Straaten HLM et al (2009) Anticoagulation therapy and imaging in neonates with a unilateral thalamic hemorrhage due to cerebral sinovenous thrombosis. Stroke 40(8):2754–2760

    Article  CAS  PubMed  Google Scholar 

  • Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93:F153–F161

    Article  CAS  PubMed  Google Scholar 

  • Kilani RA, Wetmore J (2006) Neonatal subgaleal hematoma: presentation and outcome – radiological findings and factors associated with mortality. Am J Perinatol 23:41–48

    Article  PubMed  Google Scholar 

  • Klebermass-Schrehof K, Rona Z, Waldhör T et al (2013) Can neurophysiological assessment improve timing of intervention in posthaemorrhagic ventricular dilatation? Arch Dis Child Fetal Neonatal Ed 98(4):F291–F297

    Article  PubMed  Google Scholar 

  • Kluckow M, Evans N (2000) Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed 82:F188–F194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kribs A, Roll C, Göpel W et al (2015) Nonintubated surfactant application vs conventional therapy in extremely preterm infants: a randomized clinical trial. JAMA Pediatr 169(8):723–730

    Article  PubMed  Google Scholar 

  • Krueger RC, Wu H, Zandian M et al (2006) Neural progenitors populate the cerebrospinal fluid of preterm patients with hydrocephalus. J Pediatr 148(3):337–340.e3. https://doi.org/10.1016/j.jpeds.2005.09.035

    Article  PubMed  Google Scholar 

  • Kuban K, Sanocka U, Leviton A et al (1999) White matter disorders of prematurity: association with intraventricular hemorrhage and ventriculomegaly. The Developmental Epidemiology Network. J Pediatr 134:539–546

    Article  CAS  PubMed  Google Scholar 

  • Larroche JC (1972) Post-haemorrhagic hydrocephalus in infancy. Anatomical study. Biol Neonate 20(3):287–299

    Article  CAS  PubMed  Google Scholar 

  • Larroque B, Marret S, Ancel P-Y et al (2003) White matter damage and intraventricular hemorrhage in very preterm infants: the EPIPAGE study. J Pediatr 143:477–483

    Article  PubMed  Google Scholar 

  • Leijser LM, Miller SP, van Wezel-Meijler G, Brouwer AJ, Traubici J, van Haastert IC, Whyte HE, Groenendaal F, Kulkarni AV, Han KS, Woerdeman PA, Church PT, Kelly EN, van Straaten HLM, Ly LG, de Vries LS (2018) Posthemorrhagic ventricular dilatation in preterm infants: When best to intervene? Neurology. 90(8):e698–e706. https://doi.org/10.1212/WNL.0000000000004984

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemons JA, Bauer CR, Oh W et al (2001) Very low birth weight outcomes of the National Institute of Child Health and Human Development Neonatal Research Network, January 1995 through December 1996. NICD Neonatal Research Network. Pediatrics 107(1), E1

    Article  CAS  PubMed  Google Scholar 

  • Levene MI, Starte DR (1981) A longitudinal study of posthaemorrhagic ventricular dilatation in the newborn. Arch Dis Child 56:905–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limperopoulos C, Benson CB, Bassan H et al (2005) Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 116:717–724

    Article  PubMed  Google Scholar 

  • Limperopoulos C, Bassan H, Gauvreau K et al (2007) Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 120:584–593

    Article  PubMed  Google Scholar 

  • Liu J, Wang Q, Gao F et al (2006) Maternal antenatal administration of vitamin K1 results in increasing the activities of vitamin K-dependent coagulation factors in umbilical blood and in decreasing the incidence rate of periventricular-intraventricular hemorrhage in premature infants. J Perinatal Med 34(2):173–176

    Article  CAS  Google Scholar 

  • Looney CB, Smith JK, Merck LH (2007) Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors. Radiology 242:535–541

    Article  PubMed  Google Scholar 

  • Maalouf EF, Duggan PJ, Counsell SJ et al (2001) Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 107:719–727

    Article  CAS  PubMed  Google Scholar 

  • Ment LR, Stewart WB, Ardito TA, Madri JA (1995a) Germinal matrix microvascular maturation correlates inversely with the risk period for neonatal intraventricular hemorrhage. Brain Res Dev Brain Res 84:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ment LR, Oh W, Ehrenkranz RA, Philip AG et al (1995b) Antenatal steroids, delivery mode, and intraventricular hemorrhage in preterm infants. Am J Obstet Gynecol 172:795–800

    Article  CAS  PubMed  Google Scholar 

  • Ment LR, Vohr B, Allan W et al (1999) The etiology and outcome of ventriculomegaly at term in very low birth weight infants. Pediatrics 104:243–248

    Article  CAS  PubMed  Google Scholar 

  • Ment LR, Peterson BS, Meltzer JA et al (2006) A functional magnetic resonance imaging study of the long-term influences of early indomethacin exposure on language processing in the brains of prematurely born children. Pediatrics 118:961–970

    Article  PubMed  Google Scholar 

  • Mercer JS, Vohr BR, McGrath MM et al (2006) Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemorrhage and late-onset sepsis: a randomized, controlled trial. Pediatrics 117:1235–1242

    Article  PubMed  Google Scholar 

  • Messerschmidt A, Brugger PC, Boltshauser E et al (2005) Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol 26:1659–1667

    PubMed  PubMed Central  Google Scholar 

  • Meuwissen ME, Halley DJ, Smit LS et al (2015) The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet Med. https://doi.org/10.1038/gim.2014.210

    Article  PubMed  Google Scholar 

  • Modi N, Lewis H, Al-Naqeeb N et al (2001) The effects of repeated antenatal glucocorticoid therapy on the brain. Pediatr Res 50:581–585

    Article  CAS  PubMed  Google Scholar 

  • Moody DM, Brown WR, Challa VR et al (1994) Alkaline phosphatase histochemical staining in the study of germinal matrix hemorrhage and brain vascular morphology in a very-low-birth-weight neonate. Pediatr Res 35:424–430

    Article  CAS  PubMed  Google Scholar 

  • Morales WJ, Angel JL, O’Brien WF et al (1988) The use of antenatal vitamin K in the prevention of early neonatal intraventricular hemorrhage. Am J Obstet Gynecol 159:774–779

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Morimoto M, Yamada K et al (2015) Low-grade intraventricular hemorrhage disrupts cerebellar white matter in preterm infants: evidence from diffusion tensor imaging. Neuroradiology 57(5):507–514

    Article  PubMed  Google Scholar 

  • Murphy BP, Inder TE, Rooks V, Taylor GA et al (2002) Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed 87:F37–F41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neary E, Okafor I, Al-Awaysheh F et al (2013) Laboratory coagulation parameters in extremely premature infants born earlier than 27 gestational weeks upon admission to a neonatal intensive care unit. Neonatology 104(3):222–227

    Article  CAS  PubMed  Google Scholar 

  • Noori S, McCoy M, Anderson MP et al (2014) Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J Pediatr 164(2):264–70.e1-3. https://doi.org/10.1016/j.jpeds.2013.09.045

    Article  PubMed  Google Scholar 

  • Northern Neonatal Nursing Initiative Trial Group (1996) Randomised trial of prophylactic early fresh-frozen plasma or gelatin or glucose in preterm babies: outcome at 2 years. Lancet 348:229–232

    Article  Google Scholar 

  • Olischar M, Klebermass K, Waldhoer T et al (2007) Background patterns and sleep-wake cycles on amplitude-integrated electroencephalography in preterms younger than 30 weeks gestational age with peri-/intraventricular haemorrhage. Acta Paediatr 96:1743–1750

    Article  PubMed  Google Scholar 

  • Osborn DA, Evans N, Kluckow M (2003) Hemodynamic and antecedent risk factors of early and late periventricular/intraventricular hemorrhage in premature infants. Pediatrics 112:33–39

    Article  PubMed  Google Scholar 

  • Palmer KG, Kronsberg SS, Barton BA (2005) Effect of inborn versus outborn delivery on clinical outcomes in ventilated preterm neonates: secondary results from the NEOPAIN trial. J Perinatol 25:270–275

    Article  PubMed  Google Scholar 

  • Paneth N, Rudelli R, Kazam E, Monte W (1994) Brain damage in the preterm infant, Clinics in developmental medicine no. 131. MacKeith Press, London

    Google Scholar 

  • Pape KE, Wigglesworth JS (1979) Haemorrhage, ischaemia and perinatal brain, Clinics in developmental medicine no. 69/70. SIMP/Heinemann, London, pp 133–148

    Google Scholar 

  • Parodi A, Rossi A, Severino M et al (2015a) Accuracy of ultrasound in assessing cerebellar haemorrhages in very low birthweight babies. Arch Dis Child Fetal Neonatal Ed 100(4):F289–F292

    Article  PubMed  Google Scholar 

  • Parodi A, Morana G, Severino MS et al (2015b) Low-grade intraventricular hemorrhage: is ultrasound good enough? J Matern Fetal Neonatal Med 28(Suppl 1):2261–2264

    Article  PubMed  Google Scholar 

  • Patra K, Wilson-Costello D, Taylor HG et al (2006) Grades I-II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. J Pediatr 149(2):169–173

    Article  PubMed  Google Scholar 

  • Payne AH, Hintz SR, Hibbs AM et al (2013) Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network: neurodevelopmental outcomes of extremely low-gestational age neonates with low-grade periventricular-intraventricular hemorrhage. JAMA Pediatr 167:451–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Persson EK, Hagberg G, Uvebrant P (2006) Disabilities in children with hydrocephalus – a population-based study of children aged between four and twelve years. Neuropediatrics 37:330–336

    Article  PubMed  Google Scholar 

  • Plaisier A, Raets MM, Ecury-Goossen GM et al (2015) Serial cranial ultrasonography or early MRI for detecting preterm brain injury? Arch Dis Child Fetal Neonatal Ed 100(4):F293–F300

    Article  PubMed  Google Scholar 

  • Pomerance JJ, Teal JG, Gogolok JF et al (1987) Maternally administered antenatal vitamin K1: effect on neonatal prothrombin activity, partial thromboplastin time, and intraventricular hemorrhage. Obstet Gynecol 70:235–241

    CAS  PubMed  Google Scholar 

  • Poralla C, Hertfelder H, Oldenburg J et al (2011) Elevated interleukin-6 concentration and alterations of the coagulation system are associated with the development of intraventricular hemorrhage in extremely preterm infants. Neonatology 102(4):270–275

    Article  CAS  Google Scholar 

  • Poralla C, Traut C, Hertfelder HJ (2012) The coagulation system of extremely preterm infants: influence of perinatal risk factors on coagulation. J Perinatol 32:869–873

    Article  CAS  PubMed  Google Scholar 

  • Rabe H, Reynolds G, Diaz-Rossello J (2008) A systematic review and meta-analysis of a brief delay in clamping the umbilical cord of preterm infants. Neonatology 93:138–144

    Article  PubMed  Google Scholar 

  • Rademaker KJ, Groenendaal F, Jansen GH et al (1994) Unilateral haemorrhagic parenchymal lesions in the preterm infant: shape, site and prognosis. Acta Paediatr 83:602–628

    Article  CAS  PubMed  Google Scholar 

  • Radic JA, Vincer M, McNeely PD (2015) Outcomes of intraventricular hemorrhage and posthemorrhagic hydrocephalus in a population-based cohort of very preterm infants born to residents of Nova Scotia from 1993 to 2010. J Neurosurg Pediatr 15(6):580–588

    Article  PubMed  Google Scholar 

  • Roberts D, Dalziel S (2006) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 19(3), CD004454

    Google Scholar 

  • Roberts D, Brown J, Medley N, Dalziel SR (2017) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 3:CD004454

    PubMed  Google Scholar 

  • Robinson S (2012) Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J Neurosurg Pediatrics 9(3):242–258. https://doi.org/10.3171/2011.12.PEDS11136

    Article  Google Scholar 

  • Rodríguez EM, Guerra MM, Vío K et al (2012) A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res 45(3):231–241. https://doi.org/10.4067/S0716-97602012000300005

    Article  CAS  PubMed  Google Scholar 

  • Roland EH, Flodmark O, Hill A (1990) Thalamic hemorrhagic with intraventricular hemorrhage in the full term newborn. Pediatrics 85:737–742

    CAS  PubMed  Google Scholar 

  • Ross G, Boatright S, Auld PA, Nass R (1996) Specific cognitive abilities in 2-year-old children with subependymal and mild intraventricular hemorrhage. Brain Cogn 32(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Roze E, Kerstjens JM, Maathuis CG et al (2008) Risk factors for adverse outcome in preterm infants with periventricular hemorrhagic infarction. Pediatrics 122:e46–e52

    Article  PubMed  Google Scholar 

  • Roze E, Van Braeckel KN, van der Veere CN (2009) Functional outcome at school age of preterm infants with periventricular hemorrhagic infarction. Pediatrics 123:1493–1500

    Article  PubMed  Google Scholar 

  • Roze E, Benders MJ, Kersbergen KJ et al (2015) Neonatal DTI early after birth predicts motor outcome in preterm infants with periventricular hemorrhagic infarction. Pediatr Res 78(3):298–303

    Article  PubMed  Google Scholar 

  • Salonvaara M, Riikonen P, Kekomäki R et al (2005) Intraventricular haemorrhage in very‐low‐birthweight preterm infants: association with low prothrombin activity at birth. Acta Paediatr 94(6):807–811

    Article  PubMed  Google Scholar 

  • Sarkar S, Bhagat I, Dechert R et al (2009) Severe intraventricular hemorrhage in preterm infants: comparison of risk factors and short-term neonatal morbidities between grade 3 and grade 4 intraventricular hemorrhage. Am J Perinatol 26:419–424

    Article  PubMed  Google Scholar 

  • Sävman K, Blennow M, Hagberg H et al (2002) Cytokine response in cerebrospinal fluid from preterm infants with posthaemorrhagic ventricular dilatation. Acta Paediatr 91:1357–1363

    Article  PubMed  Google Scholar 

  • Schmidt B, Davis P, Moddeman D et al (2001) Trial of indomethacin prophylaxis in preterm investigators. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Eng J Med 344:1966–1972

    Article  CAS  Google Scholar 

  • Schmitz T, Heep A, Groenendaal F et al (2007) Interleukin-1beta, interleukin-18, and interferon-gamma expression in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus-markers of white matter damage? Pediatr Res 61:722–726

    Article  CAS  PubMed  Google Scholar 

  • Schreiner C, Suter C, Watzka M et al (2014) Genetic variants of the vitamin K dependent coagulation system and intraventricular hemorrhage in preterm infants. BMC Pediatr 14:219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sherlock RL, Synnes AR, Grunau RE et al (2008) Long term outcome after neonatal intraparenchymal echodensities with porencephaly. Arch Dis Child Fetal Neon Ed 93:F127–F131

    Article  CAS  Google Scholar 

  • Sirc J, Dempsey EM, Miletin J (2013) Cerebral tissue oxygenation index, cardiac output and superior vena cava flow in infants with birth weight less than 1250 grams in the first 48 hours of life. Early Hum Dev 89:449–452

    Article  CAS  PubMed  Google Scholar 

  • Smit E, Odd D, Whitelaw A (2013) Postnatal phenobarbital for the prevention of intraventricular hemorrhage in preterm infants. Cochrane Database Syst Rev 8, CD001691

    Google Scholar 

  • Soraisham AS, Singhal N, McMillan DD, Canadian Neonatal Network et al (2009) A multicenter study on the clinical outcome of chorioamnionitis in preterm infants. Am J Obstet Gynecol 372:e1–e6

    Google Scholar 

  • Soubasi V, Mitsakis K, Sarafidis K et al (2012) Early abnormal amplitude-integrated electroencephalography (aEEG) is associated with adverse short-term outcome in premature infants. Eur J Paediatr Neurol 16(6):625–630

    Article  PubMed  Google Scholar 

  • Soul JS, Eichenwald E, Walter G et al (2004) CSF removal in infantile posthemorrhagic hydrocephalus results in significant improvement in cerebral hemodynamics. Pediatr Res 55:872–876

    Article  PubMed  Google Scholar 

  • Soul JS, Hammer PE, Tsuji M et al (2007) Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res 61:467–473

    Article  PubMed  Google Scholar 

  • Spinillo A, Gardella B, Preti E (2007) Preeclampsia and brain damage among preterm infants: a changed panorama in a 20-year analysis. Am J Perinatol 24:101–106

    Article  PubMed  Google Scholar 

  • Srinivasan L, Allsop J, Counsell SJ et al (2006) Smaller cerebellar volumes in very preterm infants at term-equivalent age are associated with the presence of supratentorial lesions. AJNR Am J Neuroradiol 27:573–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staudt M, Braun C, Gerloff C, Erb M, Grodd W, Krägeloh-Mann I (2006) Developing somatosensory projections bypass periventricular brain lesions. Neurology 67:522–525

    Article  CAS  PubMed  Google Scholar 

  • Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT et al (2009a) Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology 252(1):190–199. https://doi.org/10.1148/radiol.2521081525

    Article  PubMed  Google Scholar 

  • Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT et al (2009b) Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology 252(1):190–199

    Article  PubMed  Google Scholar 

  • Synnes AR, Macnab YC, Qiu Z et al (2006) Neonatal intensive care unit characteristics affect the incidence of severe intraventricular hemorrhage. Med Care 44(8):754–759

    Article  PubMed  Google Scholar 

  • Takashima S, Takashi M, Ando Y (1986) Pathogenesis of periventricular white matter haemorrhage in preterm infants. Brain Dev 8:25–30

    Article  CAS  PubMed  Google Scholar 

  • Tam EW, Miller SP, Studholme C et al (2011) Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr 158(3):366–371

    Article  PubMed  Google Scholar 

  • Thorp JA, Jones PG, Clark RH et al (2001) Perinatal factors associated with severe intracranial hemorrhage. Am J Obstet Gynecol 185:859–862

    Article  CAS  PubMed  Google Scholar 

  • Tortora D, Severino M, Malova M, Parodi A, Morana G, Ramenghi LA, Rossi A (2016) Variability of cerebral deep venous system in preterm and term neonates evaluated on MR SWI venography. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tortora D, Severino M, Malova M, Parodi A, Morana G, Sedlacik J, Govaert P, Volpe JJ, Rossi A, Ramenghi LA (2018) Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH. Arch Dis Child Fetal Neonatal Ed 103(1):F59–F65. https://doi.org/10.1136/archdischild-2017-312710

    Article  PubMed  Google Scholar 

  • Tsuji M, Saul JP, du Plessis A et al (2000) Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 106(4):625–632

    Article  CAS  PubMed  Google Scholar 

  • Uchil D, Arulkumaran S (2003) Neonatal subgaleal hemorrhage and its relationship to delivery by vacuum extraction. Obstet Gynecol Surv 58:687–693

    Article  PubMed  Google Scholar 

  • van Alfen-van der Velden AA, Hopman JC, Klaessens JH, Feuth T et al (2007) Cerebral hemodynamics and oxygenation after serial CSF drainage in infants with PHVD. Brain Dev 29:623–629

    Article  Google Scholar 

  • van de Bor M, Verloove-Vanhorick SP, Baerts W, Brand R, Ruys JH (1984) Outcome of periventricular-intraventricular hemorrhage at 2 years of age in 484 very preterm infants admitted to 6 neonatal intensive care units in The Netherlands. Neuropediatrics 19(4):183–185

    Google Scholar 

  • Van Der Lugt NM, Kamphuis MM, Paridaans NP et al (2015) Neonatal outcome in alloimmune thrombocytopenia after maternal treatment with intravenous immunoglobulin. Blood Transfus 13:66–71

    Google Scholar 

  • Vasileiadis GT, Gelman N, Han VK et al (2004) Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age. Pediatrics 114:e367–e372

    Article  PubMed  Google Scholar 

  • Vavasseur C, Slevin M, Donoghue V, Murphy JF (2007) Effect of low grade intraventricular hemorrhage on developmental outcome of preterm infants. J Pediatr 151(2), e6

    Article  PubMed  Google Scholar 

  • Veldman A, Josef J, Fischer D et al (2006) A prospective pilot study of prophylactic treatment of preterm neonates with recombinant activated factor VII during the first 72 hours of life. Pediatr Crit Care Med 7(1):34–39

    Article  PubMed  Google Scholar 

  • Ventriculomegaly Trial Group (1994) Randomised trial of early tapping in neonatal posthaemorrhagic ventricular dilatation: results at 30 months. Arch Dis Child 70:F129–F136

    Article  Google Scholar 

  • Vesoulis ZA, Inder TE, Woodward LJ et al (2014) Early electrographic seizures, brain injury, and neurodevelopmental risk in the very preterm infant. Pediatr Res 75(4):564–569

    Article  PubMed  Google Scholar 

  • Vohr BR, Garcia-Coll C, Flanagan P, Oh W (1992) Effects of intraventricular hemorrhage and socioeconomic status on perceptual, cognitive, and neurologic status of low birth weight infants at 5 years of age. J Pediatr 121:280–285

    Article  CAS  PubMed  Google Scholar 

  • Vohr BR, Allan W, Katz KH et al (2014) Adolescents born prematurely with isolated grade 2 haemorrhage in the early 1990s face increased risks of learning challenges. Acta Paediatr 103(10):1066–1071

    Article  PubMed  Google Scholar 

  • Volpe JJ (1989) Intraventricular hemorrhage in the premature infant-current concepts. Part I. Ann Neurol 25:3–11

    Article  CAS  PubMed  Google Scholar 

  • Volpe JJ (2008a) Neonatal neurology, 4th edn. Saunders, Philadelphia

    Google Scholar 

  • Volpe JJ (2008b) Intracranial hemorrhage: subdural, primary subarachnoid, intracerebellar, intraventricular (term infant), and miscellaneous. In: Neurology of the newborn. Saunders, Philadelphia, pp 483–516

    Google Scholar 

  • Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8(1):110–124. https://doi.org/10.1016/S1474-4422(08)70294-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA (2011) The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 29(4):423–440. https://doi.org/10.1016/j.ijdevneu.2011.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltl H, Födisch HJ, Kurz R et al (1973) Intracranial haemorrhage in low-birth-weight infants and prophylactic administration of coagulation-factor concentrate. Lancet 1:1284–1286

    Article  CAS  PubMed  Google Scholar 

  • Wells JT, Ment LR (1995) Prevention of intraventricular haemorrhage in preterm infants. Early Hum Dev 42:209–233

    Article  CAS  PubMed  Google Scholar 

  • Whitelaw A, Aquilina K (2012) Management of posthaemorrhagic ventricular dilatation. Arch Dis Child Fetal Neonatal Ed 97:F229–F233

    Article  PubMed  Google Scholar 

  • Whitelaw A, Pople I, Cherian S et al (2003) Phase 1 trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation and fibrinolytic therapy. Pediatrics 111:759–765

    Article  PubMed  Google Scholar 

  • Whitelaw A, Evans D, Carter M et al (2007) Randomized clinical trial of prevention of hydrocephalus after intraventricular hemorrhage in preterm infants: brain-washing versus tapping fluid. Pediatrics 119:e1071–e1078

    Article  PubMed  Google Scholar 

  • Whitelaw A, Jary S, Kmita G et al (2010) Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125(4):e852–e858

    Article  PubMed  Google Scholar 

  • Wu YW, Hamrick SEG, Miller SP et al (2003) Intraventricular hemorrhage in term neonates caused by sinovenous thrombosis. Ann Neurol 54:123–126

    Article  PubMed  Google Scholar 

  • Yanowitz TD, Jordan JA, Gilmour CH et al (2002) Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr Res 51:310–316

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda S. de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Vries, L.S., Heep, A. (2018). Cerebral Hemorrhage in Newborns. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29489-6_275

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29489-6_275

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29487-2

  • Online ISBN: 978-3-319-29489-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics