Skip to main content

Dental Pulp Stem Cells in Tissue Engineering and Regenerative Medicine: Opportunities for Translational Research

  • Chapter
  • First Online:
Advances in Stem Cell Therapy

Abstract

With enormous advancements in the fields of stem biology and tissue engineering, new arenas for translational opportunities of these sciences have now become available. Regenerative medicine applications are becoming increasingly needed as the demand for innovative therapies continues to rise with an aging world population. The dental pulp is a well-vascularized tissue that contains precursors that form the tooth’s most important mineralized structure: dentin. This tissue has also been found to harbor a unique set of mesenchymal stem cells with characteristics similar to or even that surpass the classic bone marrow-derived mesenchymal stem cells. These cells have been collectively called dental pulp stem cells (DPSCs). In this chapter, we will provide a review of the characteristics of these cells and highlight the most important features that make DPSCs candidates for orofacial tissue regeneration as well as regenerative medicine therapeutic agents to treat a variety of diseases particularly neurodegenerative ones. Special emphasis will be put on the angiogenic and neurogenic potential of these cells while exploring the roles of the niche and different side populations. We will also highlight the indispensable importance of DPSCs in the emerging field of regenerative endodontics with special focus on their paracrine effects. Finally, an emanating role of DPSCs in clinical applications of bone tissue engineering will be overviewed mentioning several clinical trials as well as new areas for prospective research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karamzadeh R, Eslaminejad MB, Aflatoonian R. Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. J Vis Exp. 2012;(69).

    Google Scholar 

  2. Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, et al. Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells. 2015;33(3):627–38.

    Article  CAS  PubMed  Google Scholar 

  3. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  4. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry—part I: stem cell sources. J Prosthodont Res. 2012;56(3):151–65.

    Article  PubMed  Google Scholar 

  5. La Noce M, Paino F, Spina A, Naddeo P, Montella R, Desiderio V, et al. Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy. J Dent. 2014;42(7):761–8.

    Article  PubMed  CAS  Google Scholar 

  6. Huang AH, Chen YK, Lin LM, Shieh TY, Chan AW. Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J Oral Pathol Med. 2008;37(9):571–4.

    Article  PubMed  CAS  Google Scholar 

  7. Schmalz G, Smith AJ. Pulp development, repair, and regeneration: challenges of the transition from traditional dentistry to biologically based therapies. J Endod. 2014;40(4 Suppl):S2–5.

    Article  PubMed  Google Scholar 

  8. Marei MK, editor. Regenerative dentistry. New Jersey: Morgan and Claypool publishers; 2010.

    Google Scholar 

  9. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. d’Aquino R, De Rosa A, Laino G, Caruso F, Guida L, Rullo R, et al. Human dental pulp stem cells: from biology to clinical applications. J Exp Zool B Mol Dev Evol. 2009;312B(5):408–15.

    Article  PubMed  CAS  Google Scholar 

  11. Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 2001;29(6):532–9.

    Article  CAS  PubMed  Google Scholar 

  12. Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88(9):792–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wiesen RM, Padial-Molina M, Volk SL, McDonald N, Chiego Jr D, Botero T, et al. The expression of periostin in dental pulp cells. Arch Oral Biol. 2015;60(5):760–7.

    Article  CAS  PubMed  Google Scholar 

  14. El-Backly RM, Massoud AG, El-Badry AM, Sherif RA, Marei MK. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits. Aust Endod J. 2008;34(2):52–67.

    Article  PubMed  Google Scholar 

  15. Yang JW, Zhang YF, Wan CY, Sun ZY, Nie S, Jian SJ, et al. Autophagy in SDF-1alpha-mediated DPSC migration and pulp regeneration. Biomaterials. 2015;44:11–23.

    Article  CAS  PubMed  Google Scholar 

  16. Chen YJ, Zhao YH, Zhao YJ, Liu NX, Lv X, Li Q, et al. Potential dental pulp revascularization and odonto-/osteogenic capacity of a novel transplant combined with dental pulp stem cells and platelet-rich fibrin. Cell Tissue Res. 2015;361(2):439–55.

    Article  CAS  PubMed  Google Scholar 

  17. Goodell MA. Stem cell identification and sorting using the Hoechst 33342 side population (SP). Curr Protoc Cytom. 2005;Chapter 9:Unit9.18.

    Google Scholar 

  18. Kenmotsu M, Matsuzaka K, Kokubu E, Azuma T, Inoue T. Analysis of side population cells derived from dental pulp tissue. Int Endod J. 2010;43(12):1132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dimitrova-Nakov S, Baudry A, Harichane Y, Kellermann O, Goldberg M. Pulp stem cells: implication in reparative dentin formation. J Endod. 2014;40(4 Suppl):S13–8.

    Article  PubMed  Google Scholar 

  20. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100(10):5807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carinci F, Papaccio G, Laino G, Palmieri A, Brunelli G, D’Aquino R, et al. Comparison between genetic portraits of osteoblasts derived from primary cultures and osteoblasts obtained from human pulpar stem cells. J Craniofac Surg. 2008;19(3):616–25; discussion 26–7.

    Article  PubMed  Google Scholar 

  22. Wei X, Ling J, Wu L, Liu L, Xiao Y. Expression of mineralization markers in dental pulp cells. J Endod. 2007;33(6):703–8.

    Article  PubMed  Google Scholar 

  23. Chen B, Sun HH, Wang HG, Kong H, Chen FM, Yu Q. The effects of human platelet lysate on dental pulp stem cells derived from impacted human third molars. Biomaterials. 2012;33(20):5023–35.

    Article  CAS  PubMed  Google Scholar 

  24. Gagari E, Rand MK, Tayari L, Vastardis H, Sharma P, Hauschka PV, et al. Expression of stem cell factor and its receptor, c-kit, in human oral mesenchymal cells. Eur J Oral Sci. 2006;114(5):409–15.

    Article  CAS  PubMed  Google Scholar 

  25. Dissanayaka WL, Zhu X, Zhang C, Jin L. Characterization of dental pulp stem cells isolated from canine premolars. J Endod. 2011;37(8):1074–80.

    Article  PubMed  Google Scholar 

  26. Waddington RJ, Youde SJ, Lee CP, Sloan AJ. Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs. 2009;189(1–4):268–74.

    PubMed  Google Scholar 

  27. Mikami Y, Ishii Y, Watanabe N, Shirakawa T, Suzuki S, Irie S, et al. CD271/p75(NTR) inhibits the differentiation of mesenchymal stem cells into osteogenic, adipogenic, chondrogenic, and myogenic lineages. Stem Cells Dev. 2010;20(5):901–13.

    Article  CAS  Google Scholar 

  28. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One. 2014;9(10), e109305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs. 2006;184(3–4):105–16.

    Article  CAS  PubMed  Google Scholar 

  30. Liu L, Wei X, Ling J, Wu L, Xiao Y. Expression pattern of Oct-4, Sox2, and c-Myc in the primary culture of human dental pulp derived cells. J Endod. 2011;37(4):466–72.

    Article  PubMed  Google Scholar 

  31. Huang CE, Hu FW, Yu CH, Tsai LL, Lee TH, Chou MY, et al. Concurrent expression of Oct4 and Nanog maintains mesenchymal stem-like property of human dental pulp cells. Int J Mol Sci. 2014;15(10):18623–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tziafas D, Kodonas K. Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod. 2010;36(5):781–9.

    Article  PubMed  Google Scholar 

  33. Zhao Y, Wang L, Jin Y, Shi S. Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. J Dent Res. 2012;91(10):948–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ding G, Niu J, Liu Y. Dental pulp stem cells suppress the proliferation of lymphocytes via transforming growth factor-beta1. Hum Cell. 2015;28(2):81–90.

    Article  CAS  PubMed  Google Scholar 

  35. Zaky SH, Ottonello A, Strada P, Cancedda R, Mastrogiacomo M. Platelet lysate favours in vitro expansion of human bone marrow stromal cells for bone and cartilage engineering. J Tissue Eng Regen Med. 2008;2(8):472–81.

    Article  CAS  PubMed  Google Scholar 

  36. Govindasamy V, Ronald VS, Abdullah AN, Ganesan Nathan KR, Aziz ZA, Abdullah M, et al. Human platelet lysate permits scale-up of dental pulp stromal cells for clinical applications. Cytotherapy. 2011;13(10):1221–33.

    Article  CAS  PubMed  Google Scholar 

  37. El Backly R, Ulivi V, Tonachini L, Cancedda R, Descalzi F, Mastrogiacomo M. Platelet lysate induces in vitro wound healing of human keratinocytes associated with a strong proinflammatory response. Tissue Eng Part A. 2011;17(13–14):1787–800.

    Article  PubMed  CAS  Google Scholar 

  38. El Backly RM, Zaky SH, Canciani B, Saad MM, Eweida AM, Brun F, et al. Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-beta-tricalcium phosphate scaffold (Skelite) for late healing of critical size rabbit calvarial defects. J Craniomaxillofac Surg. 2014;42(5):e70–9.

    Article  PubMed  Google Scholar 

  39. El Backly RM, Zaky SH, Muraglia A, Tonachini L, Brun F, Canciani B, et al. A platelet-rich plasma-based membrane as a periosteal substitute with enhanced osteogenic and angiogenic properties: a new concept for bone repair. Tissue Eng Part A. 2013;19(1–2):152–65.

    Article  PubMed  CAS  Google Scholar 

  40. Agis H, Stampfl B, Watzek G, Gruber R. Activated platelets increase proliferation and protein synthesis of human dental pulp-derived cells. Int Endod J. 2010;43(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  41. Jadhav GR, Shah D, Raghvendra SS. Autologus platelet rich fibrin aided revascularization of an immature, non-vital permanent tooth with apical periodontitis: a case report. J Nat Sci Biol Med. 2015;6(1):224–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sachdeva GS, Sachdeva LT, Goel M, Bala S. Regenerative endodontic treatment of an immature tooth with a necrotic pulp and apical periodontitis using platelet-rich plasma (PRP) and mineral trioxide aggregate (MTA): a case report. Int Endod J. 2015;48(9):902–10.

    Article  CAS  PubMed  Google Scholar 

  43. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;18(4):696–704.

    Article  PubMed  Google Scholar 

  44. Zhao H, Feng J, Seidel K, Shi S, Klein O, Sharpe P, et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell. 2014;14(2):160–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513(7519):551–4.

    Article  CAS  PubMed  Google Scholar 

  46. Kaneko T, Arayatrakoollikit U, Yamanaka Y, Ito T, Okiji T. Immunohistochemical and gene expression analysis of stem-cell-associated markers in rat dental pulp. Cell Tissue Res. 2012;351(3):425–32.

    Article  PubMed  CAS  Google Scholar 

  47. Komada Y, Yamane T, Kadota D, Isono K, Takakura N, Hayashi S, et al. Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells. PLoS One. 2012;7(11), e46436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Horibe H, Murakami M, Iohara K, Hayashi Y, Takeuchi N, Takei Y, et al. Isolation of a stable subpopulation of mobilized dental pulp stem cells (MDPSCs) with high proliferation, migration, and regeneration potential is independent of age. PLoS One. 2014;9(5), e98553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang J, Wei X, Ling J, Huang Y, Gong Q, Huo Y. Identification and characterization of side population cells from adult human dental pulp after ischemic culture. J Endod. 2012;38(11):1489–97.

    Article  PubMed  Google Scholar 

  50. Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells. 2006;24(11):2493–503.

    Article  CAS  PubMed  Google Scholar 

  51. Wang J, Wei X, Ling J, Huang Y, Gong Q. Side population increase after simulated transient ischemia in human dental pulp cell. J Endod. 2010;36(3):453–8.

    Article  PubMed  Google Scholar 

  52. Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, et al. A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells. 2008;26(9):2408–18.

    Article  PubMed  Google Scholar 

  53. Chmilewsky F, Jeanneau C, Dejou J, About I. Sources of dentin-pulp regeneration signals and their modulation by the local microenvironment. J Endod. 2014;40(4 Suppl):S19–25.

    Article  PubMed  Google Scholar 

  54. Boyle M, Chun C, Strojny C, Narayanan R, Bartholomew A, Sundivakkam P, et al. Chronic inflammation and angiogenic signaling axis impairs differentiation of dental-pulp stem cells. PLoS One. 2014;9(11), e113419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Cooper PR, Holder MJ, Smith AJ. Inflammation and regeneration in the dentin-pulp complex: a double-edged sword. J Endod. 2014;40(4 Suppl):S46–51.

    Article  PubMed  Google Scholar 

  56. Arany PR, Cho A, Hunt TD, Sidhu G, Shin K, Hahm E, et al. Photoactivation of endogenous latent transforming growth factor-beta1 directs dental stem cell differentiation for regeneration. Sci Transl Med. 2014;6(238):238ra69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Williams DW, Wu H, Oh JE, Fakhar C, Kang MK, Shin KH, et al. 2-Hydroxyethyl methacrylate inhibits migration of dental pulp stem cells. J Endod. 2013;39(9):1156–60.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Colombo JS, Moore AN, Hartgerink JD, D’Souza RN. Scaffolds to control inflammation and facilitate dental pulp regeneration. J Endod. 2014;40(4 Suppl):S6–12.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, et al. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med. 2010;5(4):617–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma D, Cui L, Gao J, Yan W, Liu Y, Xu S, et al. Proteomic analysis of mesenchymal stem cells from normal and deep carious dental pulp. PLoS One. 2014;9(5), e97026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Bronckaers A, Hilkens P, Fanton Y, Struys T, Gervois P, Politis C, et al. Angiogenic properties of human dental pulp stem cells. PLoS One. 2013;8(8), e71104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hilkens P, Fanton Y, Martens W, Gervois P, Struys T, Politis C, et al. Pro-angiogenic impact of dental stem cells in vitro and in vivo. Stem Cell Res. 2014;12(3):778–90.

    Article  CAS  PubMed  Google Scholar 

  63. Yang H, Shin S, Ahn J, Choi Y, Kim KH, Chung CJ. Local injection of pulp cells enhances wound healing during the initial proliferative phase through the stimulation of host angiogenesis. J Endod. 2013;39(6):788–94.

    Article  CAS  PubMed  Google Scholar 

  64. Janebodin K, Zeng Y, Buranaphatthana W, Ieronimakis N, Reyes M. VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells. J Dent Res. 2013;92(6):524–31.

    Article  CAS  PubMed  Google Scholar 

  65. Li X, Hou J, Wu B, Chen T, Luo A. Effects of platelet-rich plasma and cell coculture on angiogenesis in human dental pulp stem cells and endothelial progenitor cells. J Endod. 2014;40(11):1810–4.

    Article  PubMed  Google Scholar 

  66. Leong WK, Henshall TL, Arthur A, Kremer KL, Lewis MD, Helps SC, et al. Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med. 2012;1(3):177–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, et al. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J. 2013;28(4):1634–43.

    Article  PubMed  Google Scholar 

  68. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest. 2011;122(1):80–90.

    PubMed  PubMed Central  Google Scholar 

  69. Huang GT, Al-Habib M, Gauthier P. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective. Endod Topics. 2013;28(1):51–60.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sakai VT, Cordeiro MM, Dong Z, Zhang Z, Zeitlin BD, Nor JE. Tooth slice/scaffold model of dental pulp tissue engineering. Adv Dent Res. 2011;23(3):325–32.

    Article  CAS  PubMed  Google Scholar 

  71. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007;33(4):377–90.

    Article  PubMed  Google Scholar 

  72. Nygaard-Ostby B, Hjortdal O. Tissue formation in the root canal following pulp removal. Scand J Dent Res. 1971;79(5):333–49.

    CAS  PubMed  Google Scholar 

  73. Kontakiotis EG, Filippatos CG, Tzanetakis GN, Agrafioti A. Regenerative endodontic therapy: a data analysis of clinical protocols. J Endod. 2014;41(2):146–54.

    Article  PubMed  Google Scholar 

  74. Piva E, Silva AF, Nor JE. Functionalized scaffolds to control dental pulp stem cell fate. J Endod. 2014;40(4 Suppl):S33–40.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Iohara K, Imabayashi K, Ishizaka R, Watanabe A, Nabekura J, Ito M, et al. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng Part A. 2011;17(15–16):1911–20.

    Article  CAS  PubMed  Google Scholar 

  76. Laureys WG, Cuvelier CA, Dermaut LR, De Pauw GA. The critical apical diameter to obtain regeneration of the pulp tissue after tooth transplantation, replantation, or regenerative endodontic treatment. J Endod. 2013;39(6):759–63.

    Article  PubMed  Google Scholar 

  77. Zhu X, Wang Y, Liu Y, Huang GT, Zhang C. Immunohistochemical and histochemical analysis of newly formed tissues in root canal space transplanted with dental pulp stem cells plus platelet-rich plasma. J Endod. 2014;40(10):1573–8.

    Article  PubMed  Google Scholar 

  78. Ji YM, Jeon SH, Park JY, Chung JH, Choung YH, Choung PH. Dental stem cell therapy with calcium hydroxide in dental pulp capping. Tissue Eng Part A. 2010;16(6):1823–33.

    Article  CAS  PubMed  Google Scholar 

  79. Tran HL, Doan VN. Human dental pulp stem cells cultured onto dentin derived scaffold can regenerate dentin-like tissue in vivo. Cell Tissue Bank. 2015;16(4):559–68.

    Article  CAS  Google Scholar 

  80. Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C. Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J Dent Res. 2014;93(12):1296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C. In vitro analysis of scaffold-free prevascularized microtissue spheroids containing human dental pulp cells and endothelial cells. J Endod. 2015;41(5):663–70.

    Article  PubMed  Google Scholar 

  82. Naddeo P, Laino L, La Noce M, Piattelli A, De Rosa A, Iezzi G, et al. Surface biocompatibility of differently textured titanium implants with mesenchymal stem cells. Dent Mater. 2015;31(3):235–43.

    Article  CAS  PubMed  Google Scholar 

  83. Mori G, Brunetti G, Oranger A, Carbone C, Ballini A, Lo Muzio L, et al. Dental pulp stem cells: osteogenic differentiation and gene expression. Ann N Y Acad Sci. 2011;1237:47–52.

    Article  CAS  PubMed  Google Scholar 

  84. Khanna-Jain R, Mannerstrom B, Vuorinen A, Sandor GK, Suuronen R, Miettinen S. Osteogenic differentiation of human dental pulp stem cells on beta-tricalcium phosphate/poly (l-lactic acid/caprolactone) three-dimensional scaffolds. J Tissue Eng. 2013;3(1):2041731412467998.

    Google Scholar 

  85. Graziano A, d’Aquino R, Laino G, Papaccio G. Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev. 2008;4(1):21–6.

    Article  PubMed  Google Scholar 

  86. Liu J, Jin T, Chang S, Ritchie HH, Smith AJ, Clarkson BH. Matrix and TGF-beta-related gene expression during human dental pulp stem cell (DPSC) mineralization. In Vitro Cell Dev Biol Anim. 2007;43(3–4):120–8.

    Article  CAS  PubMed  Google Scholar 

  87. Alge DL, Zhou D, Adams LL, Wyss BK, Shadday MD, Woods EJ, et al. Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med. 2009;4(1):73–81.

    Google Scholar 

  88. Zhang Z. Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Front Med. 2011;5(4):401–13.

    Article  CAS  PubMed  Google Scholar 

  89. Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T. Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant. 2010;20(7):1003–13.

    Article  PubMed  Google Scholar 

  90. Ito K, Yamada Y, Nakamura S, Ueda M. Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for osseointegration of dental implants. Int J Oral Maxillofac Implants. 2011;26(5):947–54.

    PubMed  Google Scholar 

  91. Amin Yavari S, van der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, et al. Bone regeneration performance of surface-treated porous titanium. Biomaterials. 2014;35(24):6172–81.

    Article  CAS  PubMed  Google Scholar 

  92. Lewallen EA, Riester SM, Bonin CA, Kremers HM, Dudakovic A, Kakar S, et al. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B Rev. 2014;21(2):218–30.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mangano C, De Rosa A, Desiderio V, d’Aquino R, Piattelli A, De Francesco F, et al. The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials. 2010;31(13):3543–51.

    Article  CAS  PubMed  Google Scholar 

  94. Benazzo F, Botta L, Scaffino MF, Caliogna L, Marullo M, Fusi S, et al. Trabecular titanium can induce in vitro osteogenic differentiation of human adipose derived stem cells without osteogenic factors. J Biomed Mater Res A. 2013;102(7):2061–71.

    Article  PubMed  CAS  Google Scholar 

  95. Wang Z, Pan J, Wright JT, Bencharit S, Zhang S, Everett ET, et al. Putative stem cells in human dental pulp with irreversible pulpitis: an exploratory study. J Endod. 2010;36(5):820–5.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Li S, Tu Q, Zhang J, Stein G, Lian J, Yang PS, et al. Systemically transplanted bone marrow stromal cells contributing to bone tissue regeneration. J Cell Physiol. 2008;215(1):204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu B, Zhang J, Brewer E, Tu Q, Yu L, Tang J, et al. Osterix enhances BMSC-associated osseointegration of implants. J Dent Res. 2009;88(11):1003–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin Oral Implants Res. 2004;15(4):401–12.

    Article  PubMed  Google Scholar 

  99. Kim YK, Ahn KJ, Yun PY, Kim M, Yang HS, Yi YJ, et al. Effect of loading time on marginal bone loss around hydroxyapatite-coated implants. J Korean Assoc Oral Maxillofac Surg. 2014;39(4):161–7.

    Article  Google Scholar 

  100. Schwitalla A, Muller WD. PEEK dental implants: a review of the literature. J Oral Implantol. 2011;39(6):743–9.

    Article  PubMed  Google Scholar 

  101. Abstracts of the EAO 23rd Annual Scientific Meeting, September 25–27, 2014, Rome, Italy. Clin Oral Implants Res. 2014;25 Suppl 10:1–694.

    Google Scholar 

  102. d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater. 2009;18:75–83.

    Article  PubMed  Google Scholar 

  103. Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, Paino F, et al. Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med. 2013;2(4):316–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Manimaran K, Sankaranarayanan S, Ravi VR, Elangovan S, Chandramohan M, Perumal SM. Treatment of osteoradionecrosis of mandible with bone marrow concentrate and with dental pulp stem cells. Ann Maxillofac Surg. 2015;4(2):189–92.

    Google Scholar 

  105. Lizier NF, Kerkis A, Gomes CM, Hebling J, Oliveira CF, Caplan AI, et al. Scaling-up of dental pulp stem cells isolated from multiple niches. PLoS One. 2012;7(6), e39885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bressan E, Ferroni L, Gardin C, Pinton P, Stellini E, Botticelli D, et al. Donor age-related biological properties of human dental pulp stem cells change in nanostructured scaffolds. PLoS One. 2012;7(11), e49146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15(3):4142–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shabbir A, Coz A, Rodriguez L, Salgado M, Badiavas E. Mesenchymal stem cell exosomes induce the proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 2015;13.

    Google Scholar 

  109. Wang KX, Xu LL, Rui YF, Huang S, Lin SE, Xiong JH, et al. The effects of secretion factors from umbilical cord derived mesenchymal stem cells on osteogenic differentiation of mesenchymal stem cells. PLoS One. 2015;10(3), e0120593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med. 2015;13:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Pivoraite U, Jarmalaviciute A, Tunaitis V, Ramanauskaite G, Vaitkuviene A, Kaseta V, et al. Exosomes from human dental pulp stem cells suppress carrageenan-induced acute inflammation in mice. Inflammation. 2015;38(5):1933–41.

    Article  CAS  PubMed  Google Scholar 

  112. Jarmalaviciute A, Tunaitis V, Pivoraite U, Venalis A, Pivoriunas A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy. 2015;17(7):932–9.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang J, Zhu LX, Cheng X, Lin Y, Yan P, Peng B. Promotion of dental pulp cell migration and pulp repair by a bioceramic putty involving FGFR-mediated signaling pathways. J Dent Res. 2015;94(6):853–62.

    Article  CAS  PubMed  Google Scholar 

  114. Suzuki T, Lee CH, Chen M, Zhao W, Fu SY, Qi JJ, et al. Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res. 2011;90(8):1013–8.

    Article  CAS  PubMed  Google Scholar 

  115. Kim JY, Xin X, Moioli EK, Chung J, Lee CH, Chen M, et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A. 2010;16(10):3023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pan S, Dangaria S, Gopinathan G, Yan X, Lu X, Kolokythas A, et al. SCF promotes dental pulp progenitor migration, neovascularization, and collagen remodeling—potential applications as a homing factor in dental pulp regeneration. Stem Cell Rev. 2013;9(5):655–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nakashima M, Iohara K. Mobilized dental pulp stem cells for pulp regeneration: initiation of clinical trial. J Endod. 2014;40(4 Suppl):S26–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania M. El Backly B.D.S., M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

El Backly, R.M., Marei, M.K. (2017). Dental Pulp Stem Cells in Tissue Engineering and Regenerative Medicine: Opportunities for Translational Research. In: El-Badri, N. (eds) Advances in Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-29149-9_9

Download citation

Publish with us

Policies and ethics