Skip to main content

Quality Assurance of Modern Radiotherapy Techniques in Thoracic Malignancies

  • Chapter
  • First Online:
Principles and Practice of Radiotherapy Techniques in Thoracic Malignancies
  • 1101 Accesses

Abstract

In the last decade, there have been many advancements in the treatment and management of patients with radiation therapy. One area where the advances have been the greatest is in the management and treatment of thoracic malignancies. The advances in technology have influenced all aspects of the therapeutic management of patients with some type of thoracic malignancy. These advances have improved the overall care and treatment of all patients with thoracic cancers. They have affected and improved the patient simulation, treatment planning, and treatment delivery processes. The technologic advances, however, don’t come without a cost. The quality assurance of these patients and the manpower needed to perform this increased workload has increased tremendously. This chapter discusses all of the new techniques involved in patient simulation, treatment planning, and treatment delivery. A description of the variety of techniques and vendors who provide the equipment for each is described. The additional quality assurance necessary at each step in the process of the management of these patients is given, and, once again, the vendors who provide the equipment necessary to perform the quality assurance are given. Finally, techniques in how to bring the whole process of patient simulation, treatment planning, and treatment delivery and quality assurance for each step are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halperin R, et al. Setup reproducibility in radiation therapy for lung cancer: a comparison between T-bar and expanded foam immobilization devices. Int J Radiat Oncol Biol Phys. 1999;43(1):211–6.

    Article  CAS  PubMed  Google Scholar 

  2. Negoro Y, et al. The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy. Int J Radiat Oncol Biol Phys. 2001;50(4):889–98.

    Article  CAS  PubMed  Google Scholar 

  3. Fuss M, et al. Repositioning accuracy of a commercially available double-vacuum whole body immobilization system for stereotactic body radiation therapy. Technol Cancer Res Treat. 2004;3(1):59–67.

    Article  PubMed  Google Scholar 

  4. Mah D, et al. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys. 2000;48(4):1175–85.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenzweig KE, et al. The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2000;48(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  6. Keall PJ, et al. Acquiring 4D thoracic CT scans using a multislice helical method. Phys Med Biol. 2004;49(10):2053–67.

    Article  CAS  PubMed  Google Scholar 

  7. Vedam SS, et al. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol. 2003;48(1):45–62.

    Article  CAS  PubMed  Google Scholar 

  8. Giraud P, et al. Reduction of organ motion in lung tumors with respiratory gating. Lung Cancer. 2006;51(1):41–51.

    Article  PubMed  Google Scholar 

  9. Wagman R, et al. Respiratory gating for liver tumors: use in dose escalation. Int J Radiat Oncol Biol Phys. 2003;55(3):659–68.

    Article  PubMed  Google Scholar 

  10. Mutic S, et al. Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66. Med Phys. 2003;30(10):2762–92.

    Article  PubMed  Google Scholar 

  11. Jiang SB, Wolfgang J, Mageras GS. Quality assurance challenges for motion-adaptive radiation therapy: gating, breath holding, and four-dimensional computed tomography. Int J Radiat Oncol Biol Phys. 2008;71(1 Suppl):S103–7.

    Article  PubMed  Google Scholar 

  12. Klein EE, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36(9):4197–212.

    Article  PubMed  Google Scholar 

  13. Siochi RA, et al. Information technology resource management in radiation oncology. J Appl Clin Med Phys. 2009;10(4):3116.

    Article  PubMed  Google Scholar 

  14. Yu CX. Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol. 1995;40(9):1435–49.

    Article  CAS  PubMed  Google Scholar 

  15. Cao D, et al. Comparison of plan quality provided by intensity-modulated arc therapy and helical tomotherapy. Int J Radiat Oncol Biol Phys. 2007;69(1):240–50.

    Article  PubMed  Google Scholar 

  16. Fukumoto S, et al. Small-volume image-guided radiotherapy using hypofractionated, coplanar, and noncoplanar multiple fields for patients with inoperable stage I nonsmall cell lung carcinomas. Cancer. 2002;95(7):1546–53.

    Article  PubMed  Google Scholar 

  17. ICRU, ICRU Report 62, prescribing, recording and reporting photon beam therapy (Supplement to ICRU Report 50), in International Commission on Radiation Units and Measurements 1999, ICRU: Bethesda.

    Google Scholar 

  18. Oh YK, et al. Assessment of setup uncertainties for various tumor sites when using daily CBCT for more than 2200 VMAT treatments. J Appl Clin Med Phys. 2014;15(2):4418.

    PubMed  Google Scholar 

  19. Schmidhalter D, et al. Assessment of patient setup errors in IGRT in combination with a six degrees of freedom couch. Z Med Phys. 2014;24(2):112–22.

    Article  PubMed  Google Scholar 

  20. Huang CY, et al. Six degrees-of-freedom prostate and lung tumor motion measurements using kilovoltage intrafraction monitoring. Int J Radiat Oncol Biol Phys. 2015;91(2):368–75.

    Article  PubMed  Google Scholar 

  21. Fraass B, et al. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys. 1998;25(10):1773–829.

    Article  CAS  PubMed  Google Scholar 

  22. Lee TF, Fang FM. Quantitative analysis of normal tissue effects in the clinic (QUANTEC) guideline validation using quality of life questionnaire datasets for parotid gland constraints to avoid causing xerostomia during head-and-neck radiotherapy. Radiother Oncol. 2013;106(3):352–8.

    Article  PubMed  Google Scholar 

  23. Van Dyk J, et al. Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys. 1993;26(2):261–73.

    Article  PubMed  Google Scholar 

  24. Ten Haken RK, Fraass BA. Quality assurance in 3-D treatment planning. Front Radiat Ther Oncol. 1996;29:104–14.

    Article  CAS  PubMed  Google Scholar 

  25. Stern RL, et al. Verification of monitor unit calculations for non-IMRT clinical radiotherapy: report of AAPM Task Group 114. Med Phys. 2011;38(1):504–30.

    Article  PubMed  Google Scholar 

  26. Gibbons JP, et al. Monitor unit calculations for external photon and electron beams: report of the AAPM Therapy Physics Committee Task Group No. 71. Med Phys. 2014;41(3):031501.

    Article  PubMed  Google Scholar 

  27. Butts JR, Foster AE. Comparison of commercially available three-dimensional treatment planning algorithms for monitor unit calculations in the presence of heterogeneities. J Appl Clin Med Phys. 2001;2(1):32–41.

    Article  CAS  PubMed  Google Scholar 

  28. Chan J, et al. Comparison of monitor unit calculations performed with a 3D computerized planning system and independent “hand” calculations: results of three years clinical experience. J Appl Clin Med Phys. 2002;3(4):293–301.

    Article  PubMed  Google Scholar 

  29. Low DA, et al. Dosimetry tools and techniques for IMRT. Med Phys. 2011;38(3):1313–38.

    Article  PubMed  Google Scholar 

  30. Ravichandran R, et al. Need of patient-specific quality assurance and pretreatment verification program for special plans in radiotherapy. J Med Phys. 2011;36(3):181–3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. O’Daniel J, et al. Volumetric-modulated arc therapy: effective and efficient end-to-end patient-specific quality assurance. Int J Radiat Oncol Biol Phys. 2012;82(5):1567–74.

    Article  PubMed  Google Scholar 

  32. Krishnamurthy K, et al. Formulation and initial experience on patient specific quality assurance for clinical implementation of dynamic IMRT. Gulf J Oncolog. 2009;5:44–8.

    PubMed  Google Scholar 

  33. Schreibmann E, et al. Patient-specific quality assurance method for VMAT treatment delivery. Med Phys. 2009;36(10):4530–5.

    Article  PubMed  Google Scholar 

  34. Anjum MN, et al. IMRT quality assurance using a second treatment planning system. Med Dosim. 2010;35(4):274–9.

    Article  PubMed  Google Scholar 

  35. Calvo-Ortega JF, et al. A varian DynaLog file-based procedure for patient dose-volume histogram-based IMRT QA. J Appl Clin Med Phys. 2014;15(2):4665.

    PubMed  Google Scholar 

  36. Rangaraj D, et al. Catching errors with patient-specific pretreatment machine log file analysis. Pract Radiat Oncol. 2013;3(2):80–90.

    Article  PubMed  Google Scholar 

  37. Litzenberg DW, Moran JM, Fraass BA. Verification of dynamic and segmental IMRT delivery by dynamic log file analysis. J Appl Clin Med Phys. 2002;3(2):63–72.

    Article  PubMed  Google Scholar 

  38. Chui CS, Spirou S, LoSasso T. Testing of dynamic multileaf collimation. Med Phys. 1996;23(5):635–41.

    Article  CAS  PubMed  Google Scholar 

  39. Mamalui-Hunter M, Li H, Low DA. MLC quality assurance using EPID: a fitting technique with subpixel precision. Med Phys. 2008;35(6):2347–55.

    Article  PubMed  Google Scholar 

  40. Bayouth JE, Wendt D, Morrill SM. MLC quality assurance techniques for IMRT applications. Med Phys. 2003;30(5):743–50.

    Article  CAS  PubMed  Google Scholar 

  41. Molineu A, et al. Design and implementation of an anthropomorphic quality assurance phantom for intensity-modulated radiation therapy for the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 2005;63(2):577–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Nelson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nelson, C., Kirsner, S., Saglam, Y., Alpan, V. (2016). Quality Assurance of Modern Radiotherapy Techniques in Thoracic Malignancies. In: Ozyigit, G., Selek, U., Topkan, E. (eds) Principles and Practice of Radiotherapy Techniques in Thoracic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-319-28761-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28761-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28759-1

  • Online ISBN: 978-3-319-28761-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics