Skip to main content

Structured Grid Algorithms Modelled with Complex Objects

  • Conference paper
  • First Online:
Membrane Computing (CMC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9504))

Included in the following conference series:

Abstract

We present a simple membrane computing model for a typical structured grid algorithm: a parallel and distributed seeded region growing algorithm for gray images. With a proper granularity, the system can be efficiently mapped to a distributed Actor system, possibly a cloud-based Actor system. The image pixels are partitioned in rectangular sub-images, which are modeled as complex cells and evolve via inter-cell parallelism. Pixels inside a cell are modeled as sub-cellular objects and evolve via intra-cell parallelism. The presented model is synchronous, but can be further extended to an asynchronous version. Each cell can be efficiently implemented on a multi-core or many-core architecture and cells can communicate their boundary data via messages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The landscape of parallel computing research: A view from Berkeley, Revision as of 22:32 (2008). http://view.eecs.berkeley.edu/wiki/Dwarfs. Accessed 17 November 2008

  2. Agha, G., Thati, P.: An algebraic theory of actors and its application to a simple object-based language. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp. 26–57. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The landscape of parallel computing research: A view from Berkeley. Tech. report UCB/EECS-2006-183, EECS Department, University of California, Berkeley, December 2006. http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

  4. Bernstein, P.A., Bykov, S., Geller, A., Kliot, G., Thelin, J.: Orleans: Distributed virtual actors for programmability and scalability. Tech. report MSR-TR-2014-41, March 2014. http://research.microsoft.com/apps/pubs/default.aspx?id=210931

  5. Braünl, T., Feyrer, S., Rapf, W., Reinhardt, M.: Parallel Image Processing. Springer, Heidelberg (2010). Reprint edition

    Google Scholar 

  6. Balanescu, T., Nicolescu, R., Wu, H.: Asynchronous P systems. Int. J. Nat. Comput. Res. 2(2), 1–18 (2011)

    Article  Google Scholar 

  7. Bykov, S., Geller, A., Kliot, G., Larus, J., Pandya, R., Thelin, J.: Orleans: cloud computing for everyone. In: ACM Symposium on Cloud Computing (SOCC 2011). ACM, October 2011. http://research.microsoft.com/apps/pubs/default.aspx?id=153347

  8. Díaz-Pernil, D., Peña-Cantillana, F., Gutiérrez-Naranjo, M.A.: A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing 115, 81–91 (2013)

    Article  Google Scholar 

  9. Dinneen, M.J., Kim, Y.-B., Nicolescu, R.: A faster P solution for the byzantine agreement problem. In: Gheorghe, M., Hinze, T., Paun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 175–197. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Dinneen, M.J., Kim, Y.B., Nicolescu, R.: P systems and the Byzantine agreement. J. Logic Algebraic Program. 79(6), 334–349 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. ElGindy, H., Nicolescu, R., Wu, H.: Fast distributed DFS solutions for edge-disjoint paths in digraphs. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 173–194. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Gimel’farb, G., Nicolescu, R., Ragavan, S.: P systems in stereo matching. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part II. LNCS, vol. 6855, pp. 285–292. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Gimel’farb, G., Nicolescu, R., Ragavan, S.: P system implementation of dynamic programming stereo. J. Math. Imag. Vis. 47(1–2), 13–26 (2013). http://dx.doi.org/10.1007/s10851-012-0367-6

    Article  MATH  Google Scholar 

  14. Hewitt, C.: Viewing control structures as patterns of passing messages. Artif. Intell. 8(3), 323–364 (1977). http://www.sciencedirect.com/science/article/pii/0004370277900339

    Article  Google Scholar 

  15. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco (1996)

    MATH  Google Scholar 

  16. Nicolescu, R.: Parallel and distributed algorithms in P systems. In: Gheorghe, M., Paun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 35–50. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Nicolescu, R.: Parallel thinning with complex objects and actors. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 330–354. Springer, Heidelberg (2014)

    Google Scholar 

  18. Nicolescu, R., Gimel’farb, G., Morris, J., Gong, R., Delmas, P.: Regularising ill-posed discrete optimisation: quests with P systems. Fundam. Inf. 131(3–4), 465–483 (2014)

    MATH  MathSciNet  Google Scholar 

  19. Nicolescu, R., Ipate, F., Wu, H.: Programming P systems with complex objects. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 280–300. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  20. Nicolescu, R., Ipate, F., Wu, H.: Towards high-level P systems programming using complex objects. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y. (eds.) 14th International Conference on Membrane Computing, CMC 2014, Chisinau, Moldova, 20–23 August 2013, Proceedings, pp. 255–276. Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Chisinau (2013)

    Google Scholar 

  21. Nicolescu, R., Wu, H.: BFS solution for disjoint paths in P systems. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds.) UC 2011. LNCS, vol. 6714, pp. 164–176. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Nicolescu, R., Wu, H.: New solutions for disjoint paths in P systems. Nat. Comput. 11, 637–651 (2012). http://dx.doi.org/10.1007/s11047-012-9342-9

    Article  MathSciNet  Google Scholar 

  23. Nicolescu, R., Wu, H.: Complex objects for complex applications. Rom. J. Inf. Sci. Technol. 17(1), 46–62 (2014)

    Google Scholar 

  24. Peña-Cantillana, F., Berciano, A., Díaz-Pernil, D., Gutiérrez-Naranjo, M.A.: Parallel skeletonizing of digital images by using cellular automata. In: Ferri, M., Frosini, P., Landi, C., Cerri, A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 39–48. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press Inc., New York (2010)

    Book  MATH  Google Scholar 

  26. Reina-Molina, R., Díaz-Pernil, D.: Bioinspired parallel 2D or 3D skeletonization. IMAGEN-A 3(5), 41–44 (2013)

    Google Scholar 

  27. Reina-Molina, R., Díaz-Pernil, D., Gutiérrez-Naranjo, M.A.: Cell complexes and membrane computing for thinning 2D and 3D images. In: del Amor, M.A.M., Paun, G., Pérez-Hurtado, I., Romero-Campero, F.J. (eds.) Tenth Brainstorming Week on Membrane Computing. RGNC REPORT, vol. 1, pp. 91–110. Universidad de Sevilla (2012)

    Google Scholar 

  28. Syme, D., Granicz, A., Cisternino, A.: Expert F# 3.0, 3rd edn. Apress, Berkely (2012)

    Book  Google Scholar 

  29. Wu, H.: Minimum spanning tree in P systems. In: Pan, L., Paun, G., Song, T. (eds.) Proceedings of the Asian Conference on Membrane Computing (ACMC2012), pp. 88–104. Huazhong University of Science and Technology, Wuhan (2012)

    Google Scholar 

  30. Wu, H.: Distributed Algorithms in P Systems. Ph.D. thesis, The University of Auckland, Auckland, New Zealand (2014)

    Google Scholar 

Download references

Acknowledgments

We are deeply indebted to the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Nicolescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nicolescu, R. (2015). Structured Grid Algorithms Modelled with Complex Objects. In: Rozenberg, G., Salomaa, A., Sempere, J., Zandron, C. (eds) Membrane Computing. CMC 2015. Lecture Notes in Computer Science(), vol 9504. Springer, Cham. https://doi.org/10.1007/978-3-319-28475-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28475-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28474-3

  • Online ISBN: 978-3-319-28475-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics