Skip to main content

NMR Characterization of the Dynamic Conformations of Oligosaccharides

  • Living reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

NMR spectroscopy is a potentially powerful method to delineate dynamic conformational ensembles of oligosaccharides in solution. The carbohydrate-oriented NMR approach has become more promising owing to recent methodological advances in the stages of sample preparation, spectral measurement, and data interpretation. The state-of-the-art methodology is best exemplified by conformational analyses of a series of high-mannose-type oligosaccharides, which carry fate determinants of glycoproteins recognized by a panel of intracellular lectins. Genetically engineered yeast strains are employed for the production of homogeneous oligosaccharides with isotope labeling. Paramagnetic effects including lanthanide-induced pseudo-contact shifts provide long-distance geometrical information for oligosaccharides complementing the local conformational information provided by the nuclear Overhauser effect and scalar coupling. NMR data thus collected are useful for validating conformational ensembles derived from molecular dynamics simulation, enabling the exploration of conformational spaces of oligosaccharides in solution. NMR spectroscopy combined with molecular dynamics simulation provides complementary views to crystal structures regarding lectin–oligosaccharide interactions, which are characterized by conformational adaptability of the oligosaccharides involving conformational selection and induced-fit processes. NMR spectroscopy integrated with synthetic chemistry, molecular and cellular biology, and computational simulation along with other biophysical methods will lead to the next generation of advances in glycobiology and glycotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gabius HJ, André S, Jiménez-Barbero J, Romero A, Solis D. From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci. 2011;36(6):298–313.

    Article  Google Scholar 

  2. Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395–410.

    Article  Google Scholar 

  3. Kawasaki N, Itoh S, Yamaguchi T. LC/MSn for glycoprotein analysis: N-linked glycosylation analysis and peptide sequencing of glycopeptides. Methods Mol Biol. 2009;534:239–48.

    Google Scholar 

  4. Hirabayashi J, Kuno A, Tateno H. Development and applications of the lectin microarray. Top Curr Chem. 2015;367:105–24.

    Article  Google Scholar 

  5. Rillahan CD, Paulson JC. Glycan microarrays for decoding the glycome. Annu Rev Biochem. 2011;80:797–823.

    Article  Google Scholar 

  6. Kamiya Y, Satoh T, Kato K. Recent advances in glycoprotein production for structural biology: toward tailored design of glycoforms. Curr Opin Struct Biol. 2014;26:44–53.

    Article  Google Scholar 

  7. Kamiya Y, Satoh T, Kato K. Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta. 2012;1820(9):1327–37.

    Article  Google Scholar 

  8. Unverzagt C, Kajihara Y. Chemical assembly of N-glycoproteins: a refined toolbox to address a ubiquitous posttranslational modification. Chem Soc Rev. 2013;42(10):4408–20.

    Article  Google Scholar 

  9. Olsson U, Serianni AS, Stenutz R. Conformational analysis of β-glycosidic linkages in 13C-labeled glucobiosides using inter-residue scalar coupling constants. J Phys Chem B. 2008;112(14):4447–53.

    Article  Google Scholar 

  10. Zhang W, Zhao H, Carmichael I, Serianni AS. An NMR investigation of putative interresidue H-bonding in methyl α-cellobioside in solution. Carbohydr Res. 2009;344(12):1582–7.

    Article  Google Scholar 

  11. Jonsson KHM, Pendrill R, Widmalm G. NMR analysis of conformationally dependent n J C,H and n J C,C in the trisaccharide α-L-Rhap-(1→2)[α-L-Rhap-(1→3)]-α-L-Rhap-OMe and a site-specifically labeled isotopologue thereof. Magn Reson Chem. 2011;49(3):117–24.

    Article  Google Scholar 

  12. Kamiya Y, Yamamoto S, Chiba Y, Jigami Y, Kato K. Overexpression of a homogeneous oligosaccharide with 13C labeling by genetically engineered yeast strain. J Biomol NMR. 2011;50(4):397–401.

    Article  Google Scholar 

  13. Kamiya Y, Yanagi K, Kitajima T, Yamaguchi T, Chiba Y, Kato K. Application of metabolic 13C labeling in conjunction with high-field nuclear magnetic resonance spectroscopy for comparative conformational analysis of high mannose-type oligosaccharides. Biomolecules. 2013;3(1):108–23.

    Article  Google Scholar 

  14. Zhu T, Yamaguchi T, Satoh T, Kato K. A hybrid strategy for the preparation of 13C-labeled high-mannose-type oligosaccharides with terminal glucosylation for NMR study. Chem Lett. 2015;44(12):1744–6.

    Article  Google Scholar 

  15. Suzuki T, Kajino M, Yanaka S, Zhu T, Yagi H, Satoh T, et al. Conformational analysis of a high-mannose-type oligosaccharide displaying glucosyl determinant recognised by molecular chaperones using NMR-validated molecular dynamics simulation. Chem Bio Chem. 2017;18(4):396–401.

    Google Scholar 

  16. Irani ZA, Kerkhoven EJ, Shojaosadati SA, Nielsen J. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins. Biotechnol Bioeng. 2016;113(5):961–9.

    Article  Google Scholar 

  17. Chiba Y, Akeboshi H. Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol Pharm Bull. 2009;32(5):786–95.

    Article  Google Scholar 

  18. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science. 2006;313(5792):1441–3.

    Article  Google Scholar 

  19. Yamaguchi Y, Kato K. Dynamics and interactions of glycoconjugates probed by stable-isotope-assisted NMR spectroscopy. Methods Enzymol. 2010;478:305–22.

    Article  Google Scholar 

  20. Kato K, Yamaguchi Y, Arata Y. Stable-isotope-assisted NMR approaches to glycoproteins using immunoglobulin G as a model system. Prog Nucl Magn Reson Spectrosc. 2010;56(4):346–59.

    Article  Google Scholar 

  21. Yagi H, Zhang Y, Yagi-Utsumi M, Yamaguchi T, Iida S, Yamaguchi Y, et al. Backbone 1H, 13C, and 15N resonance assignments of the Fc fragment of human immunoglobulin G glycoprotein. Biomol NMR Assign. 2015;9(2):257–60.

    Article  Google Scholar 

  22. Saxena K, Dutta A, Klein-Seetharaman J, Schwalbe H. Isotope labeling in insect cells. Methods Mol Biol. 2012;831:37–54.

    Article  Google Scholar 

  23. Yagi H, Nakamura M, Yokoyama J, Zhang Y, Yamaguchi T, Kondo S, et al. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule. J Biomol NMR. 2015;62(2):157–67.

    Article  Google Scholar 

  24. Yagi H, Fukuzawa N, Tasaka Y, Matsuo K, Zhang Y, Yamaguchi T, et al. NMR-based structural validation of therapeutic antibody produced in Nicotiana benthamiana. Plant Cell Rep. 2015;34(6):959–68.

    Article  Google Scholar 

  25. Vliegenthart JF. High resolution 1H-NMR spectroscopy of carbohydrate structures. Adv Exp Med Biol. 1980;125:77–91.

    Article  Google Scholar 

  26. Prestegard JH, Koerner TAW, Demou PC, Yu RK. Complete analysis of oligosaccharide primary structure using two-dimensional high-field proton NMR. J Am Chem Soc. 1982;104(18):4993–5.

    Article  Google Scholar 

  27. Bubb WA. NMR spectroscopy in the study of carbohydrates: characterizing the structural complexity. Concepts Magn Reson Part A. 2003;19A(1):1–19.

    Article  Google Scholar 

  28. Kato K, Sasakawa H, Kamiya Y, Utsumi M, Nakano M, Takahashi N, et al. 920 MHz ultra-high field NMR approaches to structural glycobiology. Biochim Biophys Acta Gen Subj. 2008;1780(3):619–25.

    Article  Google Scholar 

  29. Wu J, Serianni AS. Isotope-edited 1D and 2D n.m.r. spectroscopy of 13C-substituted carbohydrates. Carbohydr Res. 1992;226(2):209–18.

    Article  Google Scholar 

  30. Gonzalez L, Bruix M, Diaz-Maurino T, Feizi T, Rico M, Solis D, et al. Conformational studies of the Man8 oligosaccharide on native ribonuclease B and on the reduced and denatured protein. Arch Biochem Biophys. 2000;383(1):17–27.

    Article  Google Scholar 

  31. Wyss DF, Choi JS, Li J, Knoppers MH, Willis KJ, Arulanandam AR, et al. Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science. 1995;269(5228):1273–8.

    Article  Google Scholar 

  32. Kato K, Yamaguchi T. Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides. Glycoconj J. 2015;32(7):505–13.

    Article  Google Scholar 

  33. Yamaguchi T, Kamiya Y, Yeun-Mun C, Yamamoto S, Kato K. Terminal spin labeling of a high-mannose-type oligosaccharide for quantitative NMR analysis of its dynamic conformation. Chem Lett. 2013;42(5):544–6.

    Article  Google Scholar 

  34. Yamamoto S, Yamaguchi T, Erdélyi M, Griesinger C, Kato K. Paramagnetic lanthanide tagging for NMR conformational analyses of N-linked oligosaccharides. Chem Eur J. 2011;17(34):9280–2.

    Article  Google Scholar 

  35. Yamaguchi T, Sakae Y, Zhang Y, Yamamoto S, Okamoto Y, Kato K. Exploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulation. Angew Chem Int Ed. 2014;53(41):10941–4.

    Article  Google Scholar 

  36. Marchetti R, Perez S, Arda A, Imberty A, Jimenez-Barbero J, Silipo A, et al. “Rules of engagement” of protein-glycoconjugate interactions: a molecular view achievable by using NMR spectroscopy and molecular modeling. ChemistryOpen. 2016;5(4):274–96.

    Article  Google Scholar 

  37. Liu S, Meng L, Moremen KW, Prestegard JH. Nuclear magnetic resonance structural characterization of substrates bound to the α-2,6-sialyltransferase, ST6Gal-I. Biochemistry. 2009;48(47):11211–9.

    Article  Google Scholar 

  38. Hanashima S, Yamaguchi Y. Indirect detection of hydroxy proton exchange through deuterium-induced 13C-NMR isotope shifts. In: Taniguchi N, Endo T, Hart GW, Seeberger PH, Wong C-H, editors. Glycoscience: biology and medicine. Tokyo: Springer Japan; 2015. p. 129–35.

    Chapter  Google Scholar 

  39. Battistel MD, Azurmendi HF, Freedberg DI. Glycan OH exchange rate determination in aqueous solution: seeking evidence for transient hydrogen bonds. J Phys Chem B. 2017. doi:10.1021/acs.jpcb.6b10594.

    Google Scholar 

  40. Hanashima S, Kato K, Yamaguchi Y. 13C-NMR quantification of proton exchange at LewisX hydroxyl groups in water. Chem Commun. 2011;47(38):10800–2.

    Article  Google Scholar 

  41. Hanashima S, Ikeda A, Tanaka H, Adachi Y, Ohno N, Takahashi T, et al. NMR study of short β(1-3)-glucans provides insights into the structure and interaction with Dectin-1. Glycoconj J. 2014;31(3):199–207.

    Article  Google Scholar 

  42. Fadda E, Woods RJ. Molecular simulations of carbohydrates and protein–carbohydrate interactions: motivation, issues and prospects. Drug Discov Today. 2010;15(15–16):596–609.

    Article  Google Scholar 

  43. Re S, Nishima W, Miyashita N, Sugita Y. Conformational flexibility of N-glycans in solution studied by REMD simulations. Biophys Rev. 2012;4(3):179–87.

    Article  Google Scholar 

  44. Yamamoto S, Zhang Y, Yamaguchi T, Kameda T, Kato K. Lanthanide-assisted NMR evaluation of a dynamic ensemble of oligosaccharide conformations. Chem Commun. 2012;48(39):4752–4.

    Article  Google Scholar 

  45. Kozlov G, Pocanschi CL, Rosenauer A, Bastos-Aristizabal S, Gorelik A, Williams DB, et al. Structural basis of carbohydrate recognition by calreticulin. J Biol Chem. 2010;285(49):38612–20.

    Article  Google Scholar 

  46. Satoh T, Cowieson NP, Hakamata W, Ideo H, Fukushima K, Kurihara M, et al. Structural basis for recognition of high mannose type glycoproteins by mammalian transport lectin VIP36. J Biol Chem. 2007;282(38):28246–55.

    Article  Google Scholar 

  47. Satoh T, Yamaguchi T, Kato K. Emerging structural insights into glycoprotein quality control coupled with N-glycan processing in the endoplasmic reticulum. Molecules. 2015;20(2):2475–91.

    Article  Google Scholar 

  48. Sato S, Yoshimasa Y, Fujita D, Yagi-Utsumi M, Yamaguchi T, Kato K, et al. A self-assembled spherical complex displaying a gangliosidic glycan cluster capable of interacting with amyloidogenic proteins. Angew Chem Int Ed. 2015;54(29):8435–9.

    Article  Google Scholar 

  49. Vliegenthart JFG, Dorland L, van Halbeek H. High-resolution, 1H-nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins. In: Tipson RS, Derek H, editors. Advances in carbohydrate chemistry and biochemistry, vol. 41. New York: Academic; 1983. p. 209–374.

    Google Scholar 

  50. Yan G, Yamaguchi T, Suzuki T, Yanaka S, Sato S, Fujita M, Kato K. Hyper-assembly of self-assembled glycoclusters mediated by specific carbohydrate-carbohydrate interactions. Chem Asian J. 2017. doi: 10.1002/asia.201700202R1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kato, K., Yagi, H., Yamaguchi, T. (2017). NMR Characterization of the Dynamic Conformations of Oligosaccharides. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28275-6_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28275-6

  • Online ISBN: 978-3-319-28275-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics