Skip to main content

Nonuniform Sampling in Biomolecular NMR

  • Living reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Nonuniform sampling (NUS) is no longer an ethereal promise for future NMR spectroscopists. Freedom from comprehensively sampling the Nyquist grid has facilitated an increasing variety of applications in biomolecular NMR studies. We introduce the concepts of multidimensional experiments, sampling, and signal processing before looking at the basics of nonuniform sampling and its benefits. This chapter also includes some practical guidelines for applying NUS to protein NMR studies, and looks at more recent uses of NUS in a wide range of applications in biomolecular NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. King GF, Mobli M. Determination of peptide and protein structures using NMR spectroscopy. In: Mander L, Liu H, editors. Comprehensive natural products II: chemistry and biology. Elsevier Science & Technology; Oxford: England; 2010. p. 280–325.

    Google Scholar 

  2. Abraham RJ, Mobli M. Modelling 1H NMR spectra of organic compounds: theory, applications and NMR prediction software. Chichester: Wiley; 2008.

    Book  Google Scholar 

  3. Bieri M, Kwan AH, Mobli M, King GF, Mackay JP, Gooley PR. Macromolecular NMR spectroscopy for the nonspectroscopist: beyond macromolecular solution structure determination. FEBS J. 2011;278(5):704–15.

    Article  Google Scholar 

  4. Keeler J. Understanding NMR spectroscopy. Chichester: Wiley; 2011.

    Google Scholar 

  5. Jeener J. Oral presentation. Ampere International Summer School; Baško Polje: Yugoslavia; 1971.

    Google Scholar 

  6. Hoch JC, Maciejewski MW, Mobli M, Schuyler AD, Stern AS. Nonuniform sampling and maximum entropy reconstruction in multidimensional NMR. Acc Chem Res. 2014;47(2):708–17.

    Article  Google Scholar 

  7. Claridge TDW. High-resolution NMR techniques in organic chemistry. Amsterdam: Elsevier; 2009.

    Google Scholar 

  8. Kwan AH, Mobli M, Gooley PR, King GF, Mackay JP. Macromolecular NMR spectroscopy for the nonspectroscopist. FEBS J. 2011;278(5):687–703.

    Article  Google Scholar 

  9. Mobli M, Hoch JC, King GF. Fast acquisition methods in multidimensional NMR. In: Dingley AJ, Pascal SM, editors. Advances in biomedical spectroscopy, vol. 3. Amsterdam: IOS Press; 2011. p. 305–37.

    Google Scholar 

  10. Ernst RR. Sensitivity enhancement in NMR spectroscopy. Adv Magn Reson. 1966;2:1–135.

    Article  Google Scholar 

  11. Jansson PA, Hunt RH, Plyler EK. Resolution enhancement of spectra. J Opt Soc Am. 1970;60(5):596–9.

    Article  Google Scholar 

  12. Barkhuijsen H, de Beer R, Bovée WMMJ, van Ormondt D. Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure. J Magn Reson (1969). 1985;61(3):465–81.

    Article  Google Scholar 

  13. Mobli M, Hoch JC. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR. Prog Nucl Magn Reson Spectrosc. 2014;83:21–41.

    Article  Google Scholar 

  14. Stern AS, Donoho DL, Hoch JC. NMR data processing using iterative thresholding and minimum l1-norm reconstruction. J Magn Reson. 2007;188(2):295–300.

    Article  Google Scholar 

  15. Mobli M, Stern AS, Hoch JC. Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy. J Magn Reson. 2006;182(1):96–105.

    Article  Google Scholar 

  16. Mobli M. Reducing seed dependent variability of non-uniformly sampled multidimensional NMR data. J Magn Reson. 2015;256:60–9.

    Article  Google Scholar 

  17. Kupce E, Freeman R. Fast multi-dimensional NMR by minimal sampling. J Magn Reson. 2008;191(1):164–8.

    Article  Google Scholar 

  18. Mobli M, Maciejewski MW, Schuyler AD, Stern AS, Hoch JC. Sparse sampling methods in multidimensional NMR. Phys Chem Chem Phys. 2012;14(31):10835–43.

    Article  Google Scholar 

  19. Palmer M, Wenrich B, Stahlfeld P, Rovnyak D. Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR. J Biomol NMR. 2014;58(4):303–14.

    Article  Google Scholar 

  20. Schuyler AD, Maciejewski MW, Arthanari H, Hoch JC. Knowledge-based nonuniform sampling in multidimensional NMR. J Biomol NMR. 2011;50(3):247–62.

    Article  Google Scholar 

  21. Maciejewski MW, Qui HZ, Rujan I, Mobli M, Hoch JC. Nonuniform sampling and spectral aliasing. J Magn Reson. 2009;199(1):88–93.

    Article  Google Scholar 

  22. Szyperski T, Yeh DC, Sukumaran DK, Moseley HNB, Montelione GT. Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Proc Natl Acad Sci USA. 2002;99(12):8009–14.

    Article  Google Scholar 

  23. Rovnyak D, Sarcone M, Jiang Z. Sensitivity enhancement for maximally resolved two-dimensional NMR by nonuniform sampling. Magn Reson Chem. 2011;49(8):483–91.

    Article  Google Scholar 

  24. Grage H, Akke M. A statistical analysis of NMR spectrometer noise. J Magn Reson. 2003;162(1):176–88.

    Article  Google Scholar 

  25. Miljenović T, Jia X, Lavrencic P, Kobe B, Mobli M. A non-uniform sampling approach enables studies of dilute and unstable proteins. J Biomol NMR. 2017. doi:10.1007/s10858-017-0091-z.

  26. Rovnyak D, Frueh DP, Sastry M, Sun Z-YJ, Stern AS, Hoch JC, Wagner G. Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson. 2004;170(1):15–21.

    Article  Google Scholar 

  27. Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, Takeuchi T, Futaki S, Ito Y, Hiroaki H, Shirakawa M. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature. 2009;458(7234):106–9.

    Article  Google Scholar 

  28. Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Walchli M, Smith BO, Shirakawa M, Guntert P, Ito Y. Protein structure determination in living cells by in-cell NMR spectroscopy. Nature. 2009;458(7234):102–5.

    Article  Google Scholar 

  29. Fiorito F, Hiller S, Wider G, Wüthrich K. Automated resonance assignment of proteins: 6 DAPSY-NMR. J Biomol NMR. 2006;35(1):27–37.

    Article  Google Scholar 

  30. Le Guennec A, Dumez J-N, Giraudeau P, Caldarelli S. Resolution-enhanced 2D NMR of complex mixtures by non-uniform sampling. Magn Reson Chem. 2015;53(11):913–20.

    Article  Google Scholar 

  31. Saxena S, Stanek J, Cevec M, Plavec J, Koźmiński W. C4′/H4′ selective, non-uniformly sampled 4D HC(P)CH experiment for sequential assignments of 13C-labeled RNAs. J Biomol NMR. 2014;60(2–3):91–8.

    Article  Google Scholar 

  32. Sergeyev IV, Itin B, Rogawski R, Day LA, McDermott AE. Efficient assignment and NMR analysis of an intact virus using sequential side-chain correlations and DNP sensitization. Proc Natl Acad Sci U S A. 2017;114(20):201701484.

    Article  Google Scholar 

  33. Mobli M, Stern AS, Bermel W, King GF, Hoch JC. A non-uniformly sampled 4D HCC (CO) NH-TOCSY experiment processed using maximum entropy for rapid protein sidechain assignment. J Magn Reson. 2010;204(1):160–4.

    Article  Google Scholar 

  34. Lafon O, Hu B, Amoureux J-P, Lesot P. Fast and high-resolution stereochemical analysis by nonuniform sampling and covariance processing of anisotropic natural abundance 2D 2H NMR datasets. Chem Eur J. 2011;17(24):6716–24.

    Article  Google Scholar 

  35. Maltsev AS, Ying J, Bax A. Deuterium isotope shifts for backbone 1H, 15N and 13C nuclei in intrinsically disordered protein α-synuclein. J Biomol NMR. 2012;54(2):181–91.

    Article  Google Scholar 

  36. Stanek J, Podbevšek P, Koźmiński W, Plavec J, Cevec M. 4D Non-uniformly sampled C,C-NOESY experiment for sequential assignment of 13C,15N-labeled RNAs. J Biomol NMR. 2013;57(1):1–9.

    Article  Google Scholar 

  37. Pudakalakatti SM, Chandra K, Thirupathi R, Atreya HS. Rapid characterization of molecular diffusion by NMR spectroscopy. Chem Eur J. 2014;20(48):15719–22.

    Article  Google Scholar 

  38. Klint JK, Chin YKY, Mobli M. Rational engineering defines a molecular switch that is essential for activity of spider-venom peptides against the analgesics target NaV1.7. Mol Pharmacol. 2015;88(6):1002–10.

    Article  Google Scholar 

  39. Das BB, Opella SJ. Simultaneous cross polarization to 13C and 15N with 1H detection at 60kHz MAS solid-state NMR. J Magn Reson. 2016;262:20–6.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the Australian Research Council (ARC Future Fellowship and ARC Discovery Project), the National Health and Medical Research Council (NHMRC Project), and The University of Queensland (Strategic Research Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mobli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Miljenović, T.M., Jia, X., Mobli, M. (2017). Nonuniform Sampling in Biomolecular NMR. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_118-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28275-6_118-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28275-6

  • Online ISBN: 978-3-319-28275-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics