Skip to main content

Insect Trace Fossils in Substrates Other than Paleosols II. Bones, Caddisfly Cases, Trackways, Imprints and Aerial Nests

  • Chapter
  • First Online:
Ichnoentomology

Part of the book series: Topics in Geobiology ((TGBI,volume 37))

  • 1123 Accesses

Abstract

The universe of insect trace fossils also include those produced in bones, caddisfly cases, trackways, imprints and aerial nests. Larvae of Dermestidae, Tenebrionidae, other beetles, Diptera, termites, ants are usually mentioned as producers of traces in bones. The most common morphologies hollow or comminuted bone-filled cylindrical borings; shallow, hemispherical and star-shaped pits; rosettes or pits in construction; U-shaped borings and notches; ellipsoid chambers; grooves, trails, furrows and networks. Recognized ichnogenera are: Cubiculum, Osteocallis, and Asthenopodichnium, but the unnamed trace fossils, also reviewed in this chapter, are many. The first fossil caddisfly cases were described and named as Indusia in 1805. It is the first insect ichnotaxon named and nowadays there are more than 200 ichnospecies described belonging to different ichnogenera. These are based on the different materials that caddisfly larvae utilize to construct the cases. Folindusia, for cases constructed with leaf bites; Terrindusia for those constructed with clasts and sand grains; Indusia with mollusk shells; Pelindusia with fragments of bivalvian shells; Ostracindusia with ostracod shells, and Conchindusia with conchostrocan shells, among others. Insect trackways, imprints, trails and shallow burrows can be produced on unconsolidated substrates and become preserved. Ichnogenera of trackways attributed to insects are many, Stiaria, Lithographus, Permichnium, Stiallia, Tonganoxichnus among others. Trackway components and ichnotaxonomical treatment related to preservational variants are reviewed. Trails attributed to insects are grouped in Helminthoidichnites, Gordia, Helminthopsis, Cochlichnus, Treptichnus and Spongeliomorpha. Insect imprints, beside behavioral data, may yield detailed evidence of insect ventral morphology. Rotterodichnium, Avolatichnium and Orbiculichnus are some of the known ichnogenera. Insect aerial nests may be preserved as fossils when fallen to soil or by resin or carbonate engulfing. One of the most outstanding examples is Brownichnus favosites, a Cretaceous paper wasp nest. Blueprints illustrate traces in bones, caddisfly cases and trackway descriptive methodology, whereas color plates illustrate producers, traces and morphological details.

Sherlock Holmes closed his eyes and placed his elbows upon the arms of this chair, with his finger-tips together. “The ideal reasoner”, he remarked, “would, when he had once been shown a single fact in all its bearings, deduce from it not only all the chain of events which led up to it but also the results which would follow from it. As Cuvier could correctly describe a whole animal by the contemplation of a single bone, so the observer who has thoroughly understood one link in a series of incidents should be able to accurately state all the other ones, both before and after.”

(Sir Arthur Conan Doyle 1891, The Five Orange Pips)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Backwell LR, Parkinson AH, Roberts E, d’Derrico F, Huchet JB (2012) Criteria for identifying bone modification by termites in the fossil record. Palaeogeogr Palaeoclimatol Palaeoecol 337–338:72–87

    Article  Google Scholar 

  • Bader KS, Hasiotis ST, Martin LD (2009) Application of forensic science techniques to trace fossils on dinosaur bones from a quarry in the upper Jurassic Morrison Formation, Northeastern Wyoming. Palaios 24:140–158

    Article  Google Scholar 

  • Behrensmeyer AK (1978) Taphonomic and ecologic information from bone weathering. Paleobiology 4:150–162

    Article  Google Scholar 

  • Benner JS, Knecht RJ, Engel MS (2013) Comment on Marden (2013): “Reanalysis and experimental evidence indicate that the earliest trace fossil of a winged insect was a surface skimming neopteran”. Evolution 67:2142–2149

    Article  Google Scholar 

  • Bequaert JC, Carpenter FM (1941) The antiquity of social insects. Psyche 48:50–55

    Article  Google Scholar 

  • Berry EW (1927) A new type of caddis case from the lower Eocene of Tennessee. Proc U S Nat Mus 71:1–5

    Article  Google Scholar 

  • Bertling M, Braddy S, Bromley RG, Demathieu G, Genise JF, Mikulás R, Nielsen JK, Nielsen KSS, Rindsberg A, Schlirf M, Uchman A (2006) Names for trace fossils: a uniform approach. Lethaia 39:265–286

    Article  Google Scholar 

  • Bosc ML (1805) Note sur un fossil remarquable de la montagne de Saint-Gerand-lePuy entre Moulins et Roanne, Departement de l’Allier, appele l’Indusie tubuleuse. J Mines 17:397–400

    Google Scholar 

  • Boucot AJ (1990) Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam

    Google Scholar 

  • Braddy SJ (1995a) The ichnotaxonomy of the invertebrate trackways of the Coconino Sandstone (Lower Permian), northern Arizona. In: Lucas SG, Heckert AB (eds) Early Permian footprints and facies. Bull New Mexico Mus Nat Hist Sci 6:219–224

    Google Scholar 

  • Braddy SJ (1995b) A new arthropod trackway and associated invertebrate ichnofauna from the Lower Permian Hueco Formation of the Robledo Mountains, southern New Mexico. In: Lucas SG, Heckert AB (eds) Early Permian footprints and facies. Bull New Mexico Mus Nat Hist Sci 6:101–105

    Google Scholar 

  • Braddy SJ (1998) An overview of the invertebrate ichnotaxa from the Robledo Mountains ichnofauna (Lower Permian), Southern New Mexico. In: Lucas SG, Hoffer JM (eds) Permian Stratigraphy and Paleontology of the Robledo Mountains, New Mexico. Bull New Mexico Mus Nat Hist Sci 12:93–98

    Google Scholar 

  • Braddy SJ, Briggs DEG (2002) New Lower Permian nonmarine arthropod trace fossils from New Mexico and South Africa. J Paleontol 76:546–557

    Article  Google Scholar 

  • Briggs DEG, Miller MF, Isbell JL, Sidor CA (2010) Permo-Triassic arthropod trace fossils from the Beardmore Glacier area, central Transantarctic Mountains, Antarctica. Antarct Sci 22:185–192

    Article  Google Scholar 

  • Britt B, Scheetz RD, Dangerfield A (2008) A suite of dermestid beetle traces on dinosaur bone from the Upper Jurassic Morrison Formation, Wyoming, USA. Ichnos 15:59–71

    Article  Google Scholar 

  • Brongniart A (1810) Sur des terrains qui paraissent avoir Ă©tĂ© formĂ©s sous l’eau douce. Ann Mus Hist Nat Paris 15:357–405

    Google Scholar 

  • Brown RW (1941a) The comb of a wasp nest from the Upper Cretaceous of Utah. Am J Sci 239:54–56

    Article  Google Scholar 

  • Brown RW (1941b) Concerning the antiquity of social insects. Psyche 48:105–110

    Article  Google Scholar 

  • Brustur T (2004) An insect trace fossil (Ord. Coleoptera) in the Red Formation from the Bozului Brook Paleontological Rezervation (Vrancea County). Natl Inst Mar Geol Geo-ecol (Geo-Eco-Marina) 9–10:1–4

    Google Scholar 

  • Buatois LA, Mángano MG (2011) Ichnology. Organism-substrate interactions in space and time. Cambridge University Press, New York

    Book  Google Scholar 

  • Buatois LA, Jalfin G, Aceñolaza FG (1997) Permian non marine invertebrate trace fossils from southern Patagonia, Argentina, ichnological signatures of substrate consolidation and colonization sequences. J Paleontol 71:324–336

    Article  Google Scholar 

  • Buatois LA, Mángano MG, Maples CG, Lanier WP (1998) Ichnology of an upper Carboniferous fluvio-estuarine paleovalley: the Tonganoxie Sandstone, Buildex Quarry, Eastern Kansas, U.S.A. J Paleontol 72:152–180

    Article  Google Scholar 

  • Chin K, Bishop JR (2008) Exploited twice: bored bone in a theropod coprolite from the Jurassic Morrison Formation of Utah, U.S.A. In: Bromley RG, Buatois LA, Mángano G, Genise JF, Melchor RN (eds) Sediment-organism interactions: a multifaceted ichnology. SEPM Spec Publ 88:379–387

    Google Scholar 

  • Clark GR, Ratcliffe BC (1989) Observations on the tunnel morphology of Heterocerus brunneus Melsheimer (Coleoptera: Heteroceridae) and its paleoecological significance. J Paleontol 63:228–232

    Article  Google Scholar 

  • Cockerell TDA (1923) A fossil caddis-case. Nature 112:794

    Article  Google Scholar 

  • Cockerell TDA (1925) Tertiary insects from Kudia River, Maritime Province, Siberia. Proc U S Natl Mus 68:1–16

    Google Scholar 

  • Cruickshank ARI (1986) Biostratigraphy and classification of a new Triassic dicynodont from East Africa. Mod Geol 10:121–131

    Google Scholar 

  • Davis RB, Minter NJ, Braddy SJ (2007) The neoichnology of terrestrial arthropods. Palaeogeogr Palaeoclimatol Palaeoecol 255:284–307

    Article  Google Scholar 

  • De C (2005) Quaternary ichnofacies model for paleoenvironmental and paleosealevel interpretations: a study from the Banas River Basin, western India. J Asian Earth Sci 25:233–249

    Article  Google Scholar 

  • De los Reyes M, Genise JF, PoirĂ© DG (2014) Hallazgos de trazas fĂłsiles asociadas a restos de vertebrados en el Plioceno de OlavarrĂ­a. In: III jornadas paleontolĂłgicas del centro, OlavarrĂ­a, pp 13–14

    Google Scholar 

  • de Moor FC, Ivanov VD (2008) Global diversity of caddisflies (Trichoptera: Insecta) in freshwater. Hydrobiologia 595:393–407

    Article  Google Scholar 

  • de Valais S, Melchor RN, Genise JF (2003) Hexapodichnus casamiquelai isp. nov.: an insect trackway from the La Matilde Formation (Middle Jurassic), Santa Cruz, Argentina. Publ Esp Asoc Paleontol Argent 9:35–41

    Google Scholar 

  • Derry DE (1911) Damage done to skulls and bones by termites. Nature 86:245–246

    Article  Google Scholar 

  • Dominato VH, MothĂ© D, Avilla LS, Bertoni-Machado C (2009) Ação de insetos em vĂ©rtebras cervicais de Stegomastodon waringi (Gomphotheriidae: Mammalia) do Pleistoceno de Aguas de Araxá, Minas Gerais, Brasil. Rev Bras Paleontol 12:77–82

    Article  Google Scholar 

  • Drysdale RN (1999) The sedimentological significance of hydropsychid caddis-fly larvae (Order: Trichoptera) in a travertine-depositing stream: Louie Creek, Northwest Queensland, Australia. J Sediment Res 69:145–150

    Article  Google Scholar 

  • Dunlop JA, Braddy SJ (2011) Cteniza bavincourti and the nomenclature of arachnid-related trace fossils. J Arachnol 39:250–257

    Article  Google Scholar 

  • Ekdale AA, Bromley RG (2012) Eolian Environments. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in sedimentology, vol 64. Elsevier, Amsterdam, pp 419–440

    Google Scholar 

  • Fastovsky DE, Badamgarav D, Ishimoto H, Watabe M, Weishampel DB (1997) The paleoenvironments of Tugrikin Shireh (Gobi Desert, Mongolia) and aspects of the taphonomy and paleoecology of Protoceratops (Dinosaurian: Ornithishichia). Palaios 12:59–70

    Article  Google Scholar 

  • Fejfar O, Kaiser TM (2005) Insect bone-modification and paleoecoloy of Oligocene mammal-bearing sites in the Doupov Mountains, Northwestern Bohemia. Palaeontol Electron 8:11

    Google Scholar 

  • Genise JF (2000) The ichnofamily Celliformidae for Celliforma and allied ichnogenera. Ichnos 7:267–282

    Article  Google Scholar 

  • Genise JF, Cladera G (2004) Chubutolithes gaimanensis and other wasp trace fossils: breaking through the taphonomic barrier. J Kansas Entomol Soc 77:626–638

    Article  Google Scholar 

  • Genise JF, PetruleviÄŤius JF (2001) Caddisfly cases from the early Eocene of Chubut, Patagonia Argentina. In: Abstracts of the 2nd international congress of palaeoentomology, Krakow, Polonia, pp 12–13

    Google Scholar 

  • Genise JF, de Valais S, ApesteguĂ­a S, Novas F (2004) A trace fossil association in bones from the late Cretaceous of Patagonia, RepĂşblica Argentina. In Abstract book of the first international congress on ichnology, Trelew, Argentina, p 37

    Google Scholar 

  • Getty PR, Sproule R, Wagner DL, Bush AM (2013) Variation in wingless insect trace fossils: insights from neoichnology and the Pennsylvanian of Massachussetts. Palaios 28:243–258

    Article  Google Scholar 

  • Gilmore CW (1927) Fossil footprints from the Grand Canyon: second contribution. Smith Misc Collect 83:1–78

    Google Scholar 

  • Gladykowska-Rzecycka JJ, Parafiniuk (2001) Atypical cranial vault and cervical vertebrae lesions caused by insects. J Paleopathol 13:75–78

    Google Scholar 

  • Goldring R, Seilacher A (1971) Limulid undertracks and their sedimentological implications. Neues Jarh Geol Paläontol Abh 137:422–442

    Google Scholar 

  • Greenwood MT, Wood PJ, Monk WA (2006) The use of fossil caddisfly assemblages in the reconstruction of flow environments from floodplain paleochannels of the River Trent, England. J Paleolimnol 35:747–761

    Article  Google Scholar 

  • Guthörl P (1934) Die arthropoden aus dem Carbon und Perm des Saar-Nahe-Pfalz-Gebietes. Abh Preuss Geol Landesanstait 164:1–219

    Google Scholar 

  • Handlirsch A (1910) Fossile Wespennester. Ber Senk Naturf Ges 41:265–266

    Google Scholar 

  • Hasiotis ST (2004) Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sediment Geol 167:177–268

    Article  Google Scholar 

  • Hasiotis ST, Fiorillo AR, Hanna RR (1999) Preliminary report on borings in Jurassic dinosaur bones: Evidence for invertebrate-vertebrate interactions. In: Gillette D (ed) Vertebrate palaeontology in Utah. Utah Geol Surv Misc Publ 99:193–200

    Google Scholar 

  • Hefti E, Trechsel U, Rufenacht H, Fleisch H (1980) Use of dermestid beetles for cleaning bones. Calcif Tissue Int 31:45–47

    Article  CAS  Google Scholar 

  • Hill AP (1987) Damage to some fossil bones from Laetoli. In: Leakey MD, Harris JM (eds) A Pliocene site in Northern Tanzania. Clarendon Press, Oxford

    Google Scholar 

  • Hinton HE (1945) A monograph of the beetles associated with stored products, vol I. British Museum (Natural History), London

    Google Scholar 

  • Hitchcock E (1858) Ichnology of New England. A report on the sandstone of the Connecticut Valley, especially its fossil footmarks. William White, Boston

    Google Scholar 

  • Hitchcock E (1865) Supplement to the ichnology of New England. Commonwealth of Massachusetts, Boston

    Google Scholar 

  • Holub V, Kozur H (1981) Arthropodenfährten aus dem Rotliegenden der CSSR. Geol Paläont Mitt Innsbruck 11:95–148

    Google Scholar 

  • Huchet JB, Le Mort F, Rabinovich R, Blau S, Coqueugniot H, Arensburg B (2013) Identification of dermestid pupal chambers on Southern Levant human bones: inference for reconstruction of Middle Bronze Age mortuary practices. J Archaeol Sci 40:3793–3803

    Article  Google Scholar 

  • Hugueney M, Tachet H, EscuilliĂ© F (1990) Caddisfly pupae from the Miocene indusial limestone of Saint-GĂ©rand-Le-Puy, France. Palaeontology 33:495–502

    Google Scholar 

  • Jacobsen AR, Bromley RG (2009) New ichnotaxa based on tooth impressions on dinosaur and whale bones. Geol Q 53:373–382

    Google Scholar 

  • Jarzembowski EA (1995) Fossil caddisflies (Insecta: Trichoptera) from the Early Cretaceous of southern England. Cretac Res 16:695–703

    Article  Google Scholar 

  • Johnston JE (1999) Caddisfly cases from the Middle Eocene (Lower Lutetian) of Mississippi, USA. In: Proceedings of the first international palaeontomological conference, Moscow, pp 61–64

    Google Scholar 

  • Johnston PA, Eberth DA, Anderson PK (1996) Alleged vertebrate eggs from Upper Cretaceous redbeds, Gobi Desert, are fossil insect (Coleoptera) pupal chambers: Fictovichnus new ichnogenus. Can J Earth Sci 33:511–525

    Article  Google Scholar 

  • Kaiser TM (2000) Proposed fossil insect modification to fossil mammalian bone from Plio-Pleistocene Hominid-bearing deposits of Laetoli (Northern Tanzania). Ann Entomol Soc Am 93:693–700

    Article  Google Scholar 

  • Kaiser TM, Fejfar O, Hertel H (2004) Fossil insect modification to fossil mammalian bone from the Plio–Pleistocene Hominid-bearing deposits of Laetoli (Northern Tanzania). In: 4th International bioerosion workshop, Prague, pp 14–15

    Google Scholar 

  • Kirkland JI, Bader K (2010) Insect trace fossils associated with Protoceratops carcasses in the Djadokhta Formation (Upper Cretaceous), Mongolia. In: Ryan MJ, Chinnery-Allgeier BJ, Eberth DA (eds) New perspectives on horned dinosaurs. Indiana University, Bloomington, pp 509–519

    Google Scholar 

  • Kitching JW (1980) On some fossil arthropoda from the Limeworks, Makapansgat, Potgietersrus. Palaeontol Afr 23:63–68

    Google Scholar 

  • Knaust D (2012a) Trace-fossil systematics. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments, vol 64, Developments in sedimentology. Elsevier, Amsterdam, pp 79–102

    Chapter  Google Scholar 

  • Knecht RJ, Engel MS, Benner JS (2011) Late Carboniferous paleoichnology reveals the oldest full-body impression of a flying insect. Proc Natl Acad Sci U S A 108:6515–6519

    Article  CAS  Google Scholar 

  • Kozur HW (1981) Weitere beiträge zur paläontologie und stratigraphie des Perm. Mitt Geol Paläontol Innsbruck 11:243–257

    Google Scholar 

  • Kozur HW, Lemone DV (1995) New terrestrial arthropod trackways from the Abo Member (Sterlitamakian, Late Sakmarian, Late Wolfcampian) of the Shalem Colony Section, Robledo Mountains, New Mexico. In: Lucas SG, Heckert AB (eds) Early Permian footprints and facies. New Mexico Mus Nat Hist Sci Bull 6:107–113

    Google Scholar 

  • Krassilov VA, Silantieva N, Lewy Z (2008) Traumas of fossil leaves from the Cretaceous of Israel. In: Krassilov VA, Rasnitsyn A (eds) Plant-arthropod interactions in the early angiosperm history. Pensoft, Sofia-Moscow, pp 9–187

    Chapter  Google Scholar 

  • Kreyenberg J (1928) Experimentell-biologische Untersuchungen ĂĽber Dermestes lardarius L. und Dermestes vulpinus F. Ein Beitrag zur Frage nach der Inkonstanz der Häutungszahlen bei Coleopteren. Z Angew Entomol 14:140–188

    Article  Google Scholar 

  • Laudet F, Antoine PO (2004) Des chambres de pupation de Dermestidae (Insecta: Coleoptera) sur un os de mammifère tertiaire (phosphorites du Quercy): implications taphonomiques et palĂ©oenvironnementales. Geobios 37:376–381

    Article  Google Scholar 

  • Leggitt VL, Loewen MA (2002) Eocene Green River Formation “Oocardium tufa” reinterpreted as complex arrays of calcified caddisfly (Insecta: Trichoptera) larval cases. Sediment Geol 148:139–146

    Article  Google Scholar 

  • Lewis SE (1970) Fossil caddisfly (Trichoptera) cases from the Latah Formation (Miocene) or eastern Washington and northern Idaho. Ann Entomol Soc Am 63:621–622

    Article  Google Scholar 

  • Lewis SE, Carroll MA (1992) Caddisfly case impression from the John Day Formation (Oligocene), North-Central Oregon. Occasional papers on Palaeobiology, St. Cloud Stat Univ, vol 6(2), pp 1–6

    Google Scholar 

  • Lewis SE, Heikes PM (1990) Fossil caddisfly cases (Trichoptera), Miocene of northern Idaho, USA. Ichnos 1:143–146

    Article  Google Scholar 

  • Lewis SE, Rudolph BD, Kaczmarek JC (1992) Fossil Trichoptera from the Ruby River Range (Oligocene) near Alder, Montana. Occasional papers on Palaeobiology, St. Cloud Stat Univ, vol 6(3), p 1–6

    Google Scholar 

  • Lull RS (1915) Triassic life of the Connecticut Valley. State Conn Geol Nat Hist Surv Bull 24:1–285

    Google Scholar 

  • Lull RS (1953) Triassic life of the Connecticut Valley. State Conn Geol Nat Hist Surv Bull 81:1–336

    Google Scholar 

  • Mángano MG, Buatois LA, Claps GL (1996) Grazing trails formed by soldier-fly larvae (Diptera: Stratiomyidae) and their paleoenvironmental and paleoecological implications for the fossil record. Ichnos 4:163–167

    Article  Google Scholar 

  • Mángano MG, Buatois LA, Maples CG, Lanier WP (1997) Tonganoxichnus, a new insect trace from the upper Carboniferous of eastern Kansas. Lethaia 30:113–125

    Article  Google Scholar 

  • Mángano MG, Labandeira CC, Kvale EP, Buatois LA (2001) The insect trace fossil Tonganoxichnus from the Middle Pennsylvanian of Indiana: Paleobiologic and Paleoenvironmental implications. Ichnos 8:165–175

    Article  Google Scholar 

  • Manton SM (1972) The evolution of arthropodan locomotory mechanisms Part 10. Locomotory habits, morphology and evolution of the hexapod classes. Zool J Linn Soc 51:203–400

    Article  Google Scholar 

  • Manton SM (1977) The Arthropoda. Habits, functional morphology, and evolution. Clarendon Press, Oxford

    Google Scholar 

  • Marden JH (2013a) Reanalysis and experimental evidence indicate that the earliest trace fossil of a winged insect was a surface-skimming neopteran. Evolution 67:274–280

    Article  Google Scholar 

  • Marden JH (2013b) Reply to “Comment on Marden (2013) regarding the interpretation of the earliest trace fossil of a winged insect. Evolution 67:2150–2153

    Article  Google Scholar 

  • Martin LD, West DL (1995) The recognition and use of dermestid (Insecta, Coleoptera) pupation chambers in paleoecology. Palaeogeogr Palaeoclimatol Palaeoecol 113:303–310

    Article  Google Scholar 

  • Martins-Neto RG (1989) Novos insetos terciários do Estado de Sao Paulo. Rev Bras Geoci 19:375–386

    Google Scholar 

  • Melchor RN, Bromley RG, Bedatou E (2010a) Spongeliomorpha in nomarine settings: an ichnotaxonomic approach. Earth Environ Sci Trans R Soc Edinb 100:429–436

    Google Scholar 

  • Metz R (1987a) Insect traces from nonmarine ephemeral puddles. Boreas 16:189–195

    Article  Google Scholar 

  • Metz R (1987b) Sinusoidal trail formed by a recent biting midge (Family Ceratopogonidae): trace fossil implications. J Paleontol 61:312–314

    Article  Google Scholar 

  • Metz R (1990) Tunnels formed by mole crickets (Orthoptera: Gryllotalpidae): paleoecological implications. Ichnos 1:139–141

    Article  Google Scholar 

  • Metz R (1993) A new ichnospecies of Spongeliomorpha from the Late Triassic of New Jersey. Ichnos 2:259–262

    Article  Google Scholar 

  • Metz R (1996) Newark Basin ichnology: the Late Triassic Perkaise Member of the Passaic Formation, Sanatoga, Pennsylvania. Northeast Geol Environ Sci 18:118–129

    Google Scholar 

  • Mikuláš R, Zitt J (1999) Fossil corrosive root traces on rock surfaces and bioclasts (Bohemian Cretaceous Basin, Czech Republic). Bull Geoci Czech Geol Surv 74:289–292

    Google Scholar 

  • Mikuláš R, Kadlecová E, Fejfar O, Dvořák Z (2006) Three new ichnogenera of biting and gnawing traces on reptilian and mammalian bones: a case study from the Miocene of the Czech Republic. Ichnos 13:113–127

    Article  Google Scholar 

  • Minter NJ, Braddy SJ (2006) Walking and jumping with Palaeozoic apterygote insects. Palaeontology 49:827–835

    Article  Google Scholar 

  • Minter NJ, Braddy SJ (2009) Ichnology of an Early Permian tidal flat: the Robledo Mountains Formation of southern New Mexico, USA. Spec Pap Palaeontol 82:1–107

    Google Scholar 

  • Minter NJ, Braddy SJ, Davis RB (2007) Between a rock and a hard place: Arthropod trackways and ichnotaxonomy. Lethaia 40:365–375

    Article  Google Scholar 

  • Minter NJ, Mángano MG, Caron JB (2012) Skimming the surface with Burgess Shale arthropod locomotion. Proc R Soc Lond B 279:1613–1620

    Article  Google Scholar 

  • Monferran MD, Genise JF, Gallego OF (2008) Capullos fĂłsiles del Jurásico Medio-Superior de la Patagonia Argentina. In: ResĂşmenes del VII congreso argentino de entomologĂ­a, CĂłrdoba, p 229

    Google Scholar 

  • Monferran MD, Gallego OF, Genise JF (2009) Nuevos datos sobre los capullos fĂłsiles (tricĂłpteros) del Jurásico de la Patagonia Argentina. Comunicaciones CientĂ­ficas y TĂ©cnicas de la Universidad Nacional del Nordeste, Corrientes

    Google Scholar 

  • Montalvo CI (2002) Root traces in fossil bones from the Huayquerian (Late Miocene) faunal assemblage of TelĂ©n, La Pampa, Argentina. Acta Geol Hisp 37:37–42

    Google Scholar 

  • Musiba CM, Mabula A, Selvaggio M, Magori CC (2008) Pliocene animal trackways at Laetoli: research and conservation potential. Ichnos 15:166–178

    Article  Google Scholar 

  • Netto RG, Tognoli FMW, Gandini R, Lima JHD, Gibert JM (2012) Ichnology of the Phanerozoic deposits of southern Brazil: synthetic review. In: Netto RG, Carmona NB, Tognoli FMW (eds) Ichnology of Latin America selected papers. Monog Soc Bras Paleontol 2:37–68

    Google Scholar 

  • NiedĹşwiedzki G, Gorzelak P, Sulej T (2011) Bite traces on dicynodont bones and the early evolution of large terrestrial predators. Lethaia 44:87–92

    Article  Google Scholar 

  • Nolte MJ, Greenhalgh B, Dangerfield A, Scheetz RD, Britt BB (2004) Invertebrate burrows on dinosaur bones from the Lower Cretaceous Cedar Mountain Formation near Moab, Utah, U.S.A. Geological Society of America, Abstracts with Programs 36:379A

    Google Scholar 

  • Paes Neto VD, Pretto FA, Quezado de Figueiredo A, Francischini H, Soares MB, Schultz CL (2013) Insect trace fossils on Middle and Late Triassic vertebrate bones: ancient dermestid and termite activity? In: ResĂşmenes del II simposio latinoamericano de icnologĂ­a, Santa Rosa, La Pampa, p 53

    Google Scholar 

  • Paik IS (2000) Bone chip-filled burrows associated with bored dinosaur bone in floodplain paleosols of the Cretaceous Hasandong Formation, Korea. Palaeogeogr Palaeoclimat Palaeoecol 157:213–225

    Article  Google Scholar 

  • Paik IS (2005) The oldest record of microbial-caddisfly bioherms from the Early Cretaceous Jinju Formation, Korea: occurrence and palaeonvironmental implications. Palaeogeogr Palaeoclimat Palaeoecol 218:301–315

    Article  Google Scholar 

  • Pirrone CA, Buatois LA, Bromley RG (2014a) Ichnotaxobases for bioerosion trace fossils in bones. J Paleontol 88:195–203

    Article  Google Scholar 

  • Pirrone CA, Buatois LA, González Riga B (2014b) A new ichnospecies of Cubiculum from Upper Cretaceous dinosaur bones in western Argentina. Ichnos 21:251–260

    Article  Google Scholar 

  • Pittoni E (2009) Necropoli of Pill’e Matta Quartucciu (Cagliari, Sardinia): wild bee and solitary wasp activity and bone diagenetic factors. Int J Osteoarchaeol 19:386–396

    Article  Google Scholar 

  • Poinar G (1998) Trace fossils in amber: a new dimension for the ichnologist. Ichnos 6:47–52

    Article  Google Scholar 

  • Pomi LH, Tonni EP (2011) Termite traces on bones from the late Pleistocene of Argentina. Ichnos 18:166–171

    Article  Google Scholar 

  • Roberts EM, Tapanila L (2006) A new social insect nest from the Upper Cretaceous Kaiparowits formation of southern Utah. J Paleontol 80:768–774

    Article  Google Scholar 

  • Roberts EM, Rogers RR, Foreman BZ (2007) Continental insect borings in dinosaur bone: examples from the late Cretaceous of Madagascar and Utah. J Paleontol 81:201–208

    Article  Google Scholar 

  • RodrĂ­gues VM, Raposo-Filho JR, dos Santos SB, Fernándes ACS (1987) VespĂ­deos sociais: Registro do ninho sub-fĂłssil de Polybiini em Minas Gerais. In: ResĂşmenes del XIV congreso brasileiro de zoologĂ­a, Brasil, p 181

    Google Scholar 

  • Rogers RR (1992) Non-marine borings in dinosaur bones from the Upper Cretaceous Two Medicine Formation, Northwestern Montana. J Vertebr Paleontol 12:528–531

    Article  Google Scholar 

  • Sadler CJ (1993) Arthropod trace fossils from the Permian De Chelly Sandstone, northeastern Arizona. J Paleontol 67:240–249

    Article  Google Scholar 

  • Saneyoshi M, Watabe M (2008) Trace fossils of the Djadokhta Formation in the Tugrikin-Shireh, South Mongolia. Fossils 84:1–2

    Google Scholar 

  • Saneyoshi M, Watabe M, Suzuki S, Tsogtbaatar K (2011) Trace fossils on dinosaur bones from Upper Cretaceous eolian deposits in Mongolia: Taphonomic interpretation of paleoecosystems in ancient desert environments. Palaeogeogr Palaeoclimatol Palaeoecol 311:38–47

    Article  Google Scholar 

  • Schmerge JD, Riese DJ, Hasiotis ST (2013) Vinegaroon (Arachnida: Thelyphonida: Thelyphonidae) trackway production and morphology: implications for media and moisture control on trackway morphology and a proposal for a novel system of interpreting arthropod trace fossils. Palaios 28:116–128

    Article  Google Scholar 

  • Schmidtgen O (1927) Tierfährten im oberen Rotliegenden bei Mainz. Paläontol Z 9:101–109

    Article  Google Scholar 

  • Schwanke C, Kellner AWA (1999) Presença de perfurações de insetos (Coleoptera) em ossos isolados de sinapsĂ­deos da Formação Santa Maria, Bacia do Paraná, Triássico do Rio Grande do Sul. In: ResĂşmenes del Congreso Brasileiro de PaleontologĂ­a 16, Crato, p 100

    Google Scholar 

  • Scott JJ, Buatois LA, Mángano MG (2012) Lacustrine Environments. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in sedimentology, vol 64. Elsevier, Amsterdam, pp 379–418

    Google Scholar 

  • Seilacher A (2008) Biomats, biofilms, and bioglue as preservational agents for arthropod trackways. Palaeogeogr Palaeoclimatol Palaeoecol 270:252–257

    Article  Google Scholar 

  • Skompski S (1991) Trace fossils in the deposits of ice-dammed lakes. Kwartalnik Geol 35:119–130

    Google Scholar 

  • Smith J (1909) Upland Fauna of the Old Red Sandstone Formation of Carrick, Ayrshire. A.W. Cross, Kilwinning

    Google Scholar 

  • Stauffer PH (1979) A fossilized honeybee comb from late Cenozoic cave deposits at Batu caves, Malay Peninsula. J Paleontol 53:1416–1421

    Google Scholar 

  • Sukatcheva ID (1980) Evolution of the caddisfly (Trichoptera) larval case construction. Proc Palaeontol Inst USSR Acad Sci 41:457–468

    Google Scholar 

  • Sukatcheva ID (1982) The historical development of the Order Trichoptera. Trans Paleontol Inst USSR Acad Sci 197:1–111

    Google Scholar 

  • Sukatcheva ID (1991) The late Cretaceous stage in the history of the caddisflies (Trichoptera). Acta Hydroentomol Latvica 1:68–85

    Google Scholar 

  • Sukatcheva ID (1994) Upper Jurassic caddis-flies cases (Trichoptera) from Mongolia. Paleontol Zhurn 4:76–86

    Google Scholar 

  • Sukatcheva ID (1999) The Lower Cretaceous caddisfly (Trichoptera) case assemblages. In: Proceedings of the 1st palaeoentomological conference, Moscow, pp 163–165

    Google Scholar 

  • Thenius E (1988) Lebensspuren von aquatischen Insektenlarven aus dem Jungtertiar Niederosterreichs. Beitr Palaeontol Oeste 14:1–18

    Google Scholar 

  • Thenius E (1989) Fossile Lebensspuren aquatischen Insekten in Knochen aus dem Jungtertiär Niederösterreichs. Anz Ă–ster Akad Wiss, Mathem Naturwiss Kl 125:41–45

    Google Scholar 

  • Thenius E (2011) Fossile Lebensspuren und ihre Urheber: Der Palaeontologe als Kriminalist. Fossilien 28:80–85

    Google Scholar 

  • Timm RM (1982) Dermestids. Field Mus Nat Hist Bull 53:14–18

    Google Scholar 

  • Tobien H (1965) Insekten-frassspuren an Tertiären und Pleistozänen Säugertierknochen. Senck Lethaia 46:441–451

    Google Scholar 

  • Trewin NH (1994) A draft system for the identification and description of arthropod trackways. Palaeontology 37:811–823

    Google Scholar 

  • Uchman A (2005) Treptichnus-like traces made by insect larvae (Diptera: Chironomidae: Tipulidae). In: Buta RJ, Rindsberg AK, Kopaska-Merkel DC (eds) Pennsylvanian footprints in the Black Warrior Basin of Alabama. Alabama Paleontological Society Monograph, vol 1, pp 143–146

    Google Scholar 

  • Uchman A, Gaigalas A, Kazakauskas V (2008) Trace fossils from the Upper Pleistocene glaciolacustrine laminated sediments of Lithuania. Geologija 50:212–226

    Article  Google Scholar 

  • Uchman A, Kazakauskas V, Gaigalas A (2009) Trace fossils from Late Pleistocene varved lacustrine sediments in eastern Lithuania. Palaeogeogr Palaeoclimatol Palaeoecol 272:199–211

    Article  Google Scholar 

  • Vialov OC (1973) Classification of the fossil caddis cases. Deop Akad Nauk Ukra 7:585–588

    Google Scholar 

  • Vialov OC, Sukatcheva ID (1976) Larval cases of the Caddisflies (Insecta, Trichoptera), and their stratigraphical importance. Trans Joint Soviet-Mongolian Paleontol Expedition 3:169–232

    Google Scholar 

  • Walter H (1983) Zur taxonomie, ökologie und biostratigraphie der ichnia liminisch-terrestrischer arthropoden des mitteleuropäischen jungpaläozoikums. Freiberger Forschungsheifte C 382:146–193

    Google Scholar 

  • Walter H (1985) Zur Ichnologie des Pleistofins von Liebegast. Freiberger Forschungshefte C 400:101–116

    Google Scholar 

  • Wenzel JW (1990) A social wasp’s nest from the Cretaceous period, Utah, USA and its biogeographical significance. Psyche 97:21–29

    Article  Google Scholar 

  • West DL, Hasiotis ST (2007) Trace fossils in an archeological context: examples from bison skeletons, Texas, USA. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 545–561

    Chapter  Google Scholar 

  • Wheeler GC, Wheeler J (1976) Ant larvae: review and synthesis. Mem Entomol Soc Wash 7:1–108

    Google Scholar 

  • Wiggins GB (2004) Caddisflies: the underwater architect. University of Toronto Press, Toronto

    Google Scholar 

  • Williams NE (1988) The use of caddisflies (Trichoptera) in palaeoecology. Palaeogeogr Palaeoclimat Palaeoecol 62:493–500

    Article  Google Scholar 

  • Wilson EO, Taylor RW (1964) A fossil ant colony: new evidence of social antiquity. Psyche 71:93–103

    Article  Google Scholar 

  • Zherikhin VV (2002a) Insect trace fossils. In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer Academic Publishers, Dordrecht, pp 303–324

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Genise, J.F. (2017). Insect Trace Fossils in Substrates Other than Paleosols II. Bones, Caddisfly Cases, Trackways, Imprints and Aerial Nests. In: Ichnoentomology. Topics in Geobiology, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-28210-7_18

Download citation

Publish with us

Policies and ethics