Skip to main content

Fractal Fatigue Analysis of Valve Units of Sucker Rod Pumps

  • Chapter
  • First Online:
Synergetics and Fractals in Tribology

Abstract

The valves are designed for periodic isolation of the bottom of the borehole pump occupied by already received fluid from the pump-compressor tubing (PCT), where this fluid flows. The valves are much more susceptible to wear than a sleeve-plunger pair. Therefore, most of the round-trip operations during the well operation are linked to the replacement of valve assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatures

  1. A.Kh. Dzhanahmedov, Tribotekhnicheskie problemy v neftegazovom oborudovanii (Baku, Elm, 1998), p. 216

    Google Scholar 

  2. A.Kh. Janahmadov, Neftianaia tribologiia (Baku, Elm, 2003), p. 326

    Google Scholar 

  3. A.N. Adonin, Voprosy gidravliki i rabotosposobnosti glubinnogo nasosa (Aznefteizdat, Baku, 1955), p. 192

    Google Scholar 

  4. A.Kh. Janahmadov, L.A. Akbarova, A.M. Mekhtiev, Issledovanie stepeni iznosa v klapannykh uzlakh skvazhinnogo shtangovogo nasosa. Uchenye zapiski AzGNA, 35–45 (1994)

    Google Scholar 

  5. M. Alesai, Analiz fraktal’noi razmernosti ploshchadi povrezhdeniia klapannykh uzlov shtangovyh skvazhinnykh nasosov. Vestnik Azerbaidzhanskoi Inzhenernoi Akademii, Tom 8(3), 37–45 (2011)

    Google Scholar 

  6. N.B. Demkin, Kontaktirovanie sherohovatykh poverhnostei (Nauka, Moscow, 1976), p. 227

    Google Scholar 

  7. E. Feder, Fraktaly, per. s angl (Mir, Moscow, 1991), p. 254

    Google Scholar 

  8. R.S. Sayles, T.R. Thomas, Surface topography as a nonstationary random process. Natura 271, 431–434 (1978)

    Article  ADS  Google Scholar 

  9. M. Berry, J. Hannay, Topography of random surfaces. Nature 273, 573 (1978)

    Article  ADS  Google Scholar 

  10. B.B. Mandelbrot, The fractal geometry of nature (W.H. Freeman, New-York, 1982)

    MATH  Google Scholar 

  11. R.S. Sayles, T.R. Thomas, Reply to tomopgraphy of random surfaces by M.V. Berry and J.H. Hanny. Nature 273, 573 (1978)

    Article  ADS  Google Scholar 

  12. B.B. Mandelbrot, D.E. Passoja, A.J. Paullay, Fractal character of fracture surfaces of metals. Nature 308, 721–722 (1984)

    Article  ADS  Google Scholar 

  13. B.B. Mandelbrot, Samoafinnye fraktal’nye mnozhestva, v kn. Fraktaly v fizike (Mir, Moscow, 1988), p. 9–47

    Google Scholar 

  14. B.B. Mandelbrot, Self-affine fractals and fractal dimension. Phys. Scr. 32, 257–266 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R.F. Voss, Random fractals, Characterization and measurement, Scaling Phenomena, in Disordered Systems, ed. by R. Pynn, A. Skjeltorp (Plenum Press, New-York, 1985), pp. 1–11

    Google Scholar 

  16. A.V. Chichinadze, E.L. Braun, N.A. Bushe, Osnovy tribologii (Mashinostroenie, Moscow, 2001), p. 664

    Google Scholar 

  17. L.M. Kachanov, Osnovy mekhaniki razrushenija (Nauka, Moscow, 1974), p. 312

    Google Scholar 

  18. L.R. Botvina, Razrushenie. Kinetika, mekhanizmy, obshchie zakonomernosti (Nauka, Moscow, 2008), p. 334

    Google Scholar 

  19. K.V. Frolov, Metody sovershenstvovaniia mashin i sovremennye problemy mashinovedeniia (Moscow, Mashinostroenie, 1984), p. 224

    Google Scholar 

  20. N.V. Demkin, Kontaktirovanie sherohovatykh poverkhnostei (Nauka, Moscow, 1970), p. 227

    Google Scholar 

  21. I.V. Kragel’skii, M.N. Dobychin, V.S. Kombalov, Osnovy raschetov na trenie i iznos (Moscow, Mashinostroenie, 1977), p. 526

    Google Scholar 

  22. H. Chikhos, Sistemnyi analiz v tribonike, per. s angl (Mir, Moscow, 1982), p. 236

    Google Scholar 

  23. K. Dzhonson, Mekhanika kontaktnogo vzaimodeistviia, per. s angl (Mir, Moscow, 1989), p. 509

    Google Scholar 

  24. A.Kh. Janahmadov, Fiziko-stokhasticheskoe tribomodelirovanie (Elm, Baku, 1988), p. 152

    Google Scholar 

  25. I.V. Kragel’skogo, V.V. Alisina, Trenie, iznashivanie i smazka. Spravočnik, v 2-h kn., pod red (Mašinostroenie, Moscow, 1978), kn. 1-ia, p. 400

    Google Scholar 

  26. V.S. Ivanova, A.S. Balankin, I.Zh. Bunin, A.A. Oksogaev, Sinergetika i fraktaly v materialovedenii (Nauka, Moscow, 1994), p. 383

    Google Scholar 

  27. V.S. Ivanova, V.U. Novikov, Nelineinyi mir. Tom 2(3), 197–202 (2004)

    Google Scholar 

  28. A.I. Olemskoi, I.I. Naumov, Fraktal’naia kinetika ustalostnogo razrusheniia, v sb. Sinergetika i ustalostnoe razrushenie (Nauka, Moscow, 1989), p. 200–214

    Google Scholar 

  29. I.K. Kohanenko, Fraktaly v otsenke evoliutsii slozhnykh sistem. Avtomatika i telemekhanika 8, 54–62 (2002)

    Google Scholar 

  30. Standart ISO 4287:1998, Geometricheskie kharakteristiki izdelii. Struktura poverhnosti - profil’nyi metod. Terminy, opredeleniia i parametry struktury (Moscow, 1999), p. 252

    Google Scholar 

  31. B. Person, O. Albohr et al. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17 (2005)

    Google Scholar 

  32. A. Majumdar, B. Bhushan, Characterization and modeling of surface roughness and contact mechanics. in Handbook of Micro and Nanotribology, Chapter 4, (1999)

    Google Scholar 

  33. G. Nikolis, I. Prigozhin, Samoorganizatsiia v neravnovesnykh sistemakh (Mir, Moscow, 1979), p. 300

    Google Scholar 

  34. V.E. Panin, V.A. Likhachev, V. Grinaev, Strukturnye urovni deformatsii tverdykh tel (Nauka, Novosibirsk, 1995), p. 163

    Google Scholar 

  35. V.E. Panin, V. Grinaev, V.I. Danilov, Strukturnye urovni plasticheskoi deformatsii i razrusheniia (Nauka Sib. otd-nie, Novosibirsk, 1990), p. 255

    Google Scholar 

  36. A.Kh. Janahmadov, O.A. Dyshin, Synergetics and Fractal Dimensions in Tribology. J. Frict. Wear 32(1), 80–95 (2011)

    Google Scholar 

  37. A.Kh. Janahmadov, A.M. Pashaev, M.G. Javadov, M.Y. Javadov, The multifraktal analysis of the fatigue fracture under the process of friction, 5th World tribology Congress, WTC 2013, September, 8–13, Torino, Italy, id 821 (2013)

    Google Scholar 

  38. I.V. Kragel’skii, Trenie i iznos (Mashgiz, Moscow, 1968), p. 480

    Google Scholar 

  39. N. Drozdov, E.G. Iudin, A.I. Belov, Prikladnaia tribologiia (Eko-Press, Moscow, 2010), p. 604

    Google Scholar 

  40. A.Kh. Janahmadov, M.Y. Javadov, O.A. Dyshin, Diagnosis of the contact interaction of solid bodies at friction using fractal analysis methods. J. Sci. Appl. Eng. Q. 04, 5–16 (2014)

    Google Scholar 

  41. B. Mandelbrot, Fractals, Form, Chance and Dimension (Freeman, San-Francisco, 1977)

    MATH  Google Scholar 

  42. T.S. Akhromeeva, S.P. Kurdiumov, G.G. Malinetskii, A.A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos (Nauka, Moscow, 1992), p. 544

    Google Scholar 

  43. R.M. Kronover, Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, per. s angl (Postmarket, Moscow, 2000), p. 350

    Google Scholar 

  44. A.M. Pashaev, A.Sh. Mekhtiev, A.Kh. Janahmadov, O.A. Dyshin, Avtomodel’nost’ i fraktal’naia mekhanika razrusheniia. Vestnik Azerbaidzhanskoi Inzhenernoi akademii, Tom 1(1), 93–103 (2009)

    Google Scholar 

  45. M. Berry, J. Hannay, Topography of random surface. Nature 273, 573 (1978)

    Article  ADS  Google Scholar 

  46. J. Polac, K. Obetlik, Strength metals and alloys, in Proceedings of VIII International Conference, Tamper, 22–26 Aug., ICSMA 8 Oxford etc., vol. 2, pp. 761–766 (1988)

    Google Scholar 

  47. B. Zel’dovich, D.D. Sokolov, Uspekhi fiz. nauk., Tom 146(3), 493–506 (1985)

    Google Scholar 

  48. D. Vaitkhauz, Metrologiia poverkhnostei. Printsipy, promyshlennye metody i pribory (Intellekt, Dolgoprudnyi, 2009)

    Google Scholar 

  49. X. Jiang, P.J. Scott, D.J. Whitehouse, L. Blunt, Paradigm shifts in surface metrology. Part I. Historical Philosophy. Part II. The current shift. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 463 (2007)

    Google Scholar 

  50. A. Fedotov, Spektr moshchnosti kak kharakteristika sherokhovatosti poverkhnosti. Fotonika 6, 18–21 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahad Kh. Janahmadov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Janahmadov, A.K., Javadov, M.Y. (2016). Fractal Fatigue Analysis of Valve Units of Sucker Rod Pumps. In: Synergetics and Fractals in Tribology. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-28189-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28189-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28187-2

  • Online ISBN: 978-3-319-28189-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics