Skip to main content

Intraoperative Neural Injury Management: Neuropraxic Non-transection Injury

  • Chapter
  • First Online:
The Recurrent and Superior Laryngeal Nerves

Abstract

During thyroid surgery, the macroscopically intact recurrent laryngeal nerve (RLN) may cease to function, even though it is not transected. Traction, cautery, pressure, crush, or being tied in surrounding tissue are some causes of impaired function during surgery. Invisible RLN injuries (such as thermal, traction, compression, contusion, or pressure) are not detected by the surgeon’s eye; only a functional assessment of the RLN with intraoperative nerve monitoring (IONM) can detect such insults. With the application of IONM, we appreciate that traction is the major cause of RLN injury during thyroid surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gacek RR, Lyon MJ. Fiber components of the recurrent laryngeal nerve in the cat. Ann Otol Rhinol Laryngol. 1976;85:460–71.

    Article  CAS  PubMed  Google Scholar 

  2. Berkowitz RG, Sun QJ, Chalmers J, Pilowsky P. Identification of posterior cricoarytenoid motoneurons in the rat. Ann Otol Rhinol Laryngol. 1999;108:1033–41.

    Article  CAS  PubMed  Google Scholar 

  3. Bieger D, Hopkins DA. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol. 1987;262:546–62.

    Article  CAS  PubMed  Google Scholar 

  4. Gacek RR. Localization of laryngeal motor neurons in the kitten. Laryngoscope. 1975;85:1841–61.

    Article  CAS  PubMed  Google Scholar 

  5. Gacek RR, Malmgren LT. Laryngeal motor innervation-central. In: Blitzer A, editor. Neurologic disorders of the larynx. New York: Thieme; 1992. p. 29–35.

    Google Scholar 

  6. Hinrichsen CF, Ryan AT. Localization of laryngeal motoneurons in the rat: morphologic evidence for dual innervation? Exp Neurol. 1981;74:341–55.

    Article  CAS  PubMed  Google Scholar 

  7. Kobler JB, Datta S, Goyal RK, Benecchi EJ. Innervation of the larynx, pharynx, and upper esophageal sphincter of the rat. J Comp Neurol. 1994;349:129–47.

    Article  CAS  PubMed  Google Scholar 

  8. Lobera B, Pasaro R, Gonzalez-Baron S, Delgado-Garcia JM. A morphological study of ambiguus nucleus motoneurons innervating the laryngeal muscles in the rat and cat. Neurosci Lett. 1981;23:125–30.

    Article  CAS  PubMed  Google Scholar 

  9. Patrickson JW, Smith TE, Zhou SS. Motor neurons of the laryngeal nerves. Anat Rec. 1991;230:551–6.

    Article  CAS  PubMed  Google Scholar 

  10. Portillo F, Pasaro R. Location of motoneurons supplying the intrinsic laryngeal muscles of rats. Horseradish peroxidase and fluorescence double-labeling study. Brain Behav Evol. 1988;32:220–5.

    Article  CAS  PubMed  Google Scholar 

  11. Fontenot TE, Randolph GW, Friedlander PL, Masoodi H, Yola IM, Kandil E. Gender, race, and electrophysiologic characteristics of the branched recurrent laryngeal nerve. Laryngoscope. 2014;124:2433–7.

    Article  PubMed  Google Scholar 

  12. Sandillon H. Le role de l’anse de Galien Unités dEnseignement et de Recherche des Siences Médicales. Bordeaux: Université de Bordeaux II; 1984.

    Google Scholar 

  13. Kandil E, Abdelghani S, Friedlander P, et al. Motor and sensory branching of the recurrent laryngeal nerve in thyroid surgery. Surgery. 2011;150:1222–7.

    Article  PubMed  Google Scholar 

  14. Serpell JW, Yeung MJ, Grodski S. The motor fibers of the recurrent laryngeal nerve are located in the anterior extralaryngeal branch. Ann Surg. 2009;249:648–52.

    Article  PubMed  Google Scholar 

  15. Maranillo E, Leon X, Ibanez M, Orus C, Quer M, Sanudo JR. Variability of the nerve supply patterns of the human posterior cricoarytenoid muscle. Laryngoscope. 2003;113:602–6.

    Article  PubMed  Google Scholar 

  16. Maranillo E, Leon X, Orus C, Quer M, Sanudo JR. Variability in nerve patterns of the adductor muscle group supplied by the recurrent laryngeal nerve. Laryngoscope. 2005;115:358–62.

    Article  PubMed  Google Scholar 

  17. Sanudo JR, Maranillo E, Leon X, Mirapeix RM, Orus C, Quer M. An anatomical study of anastomoses between the laryngeal nerves. Laryngoscope. 1999;109:983–7.

    Article  CAS  PubMed  Google Scholar 

  18. Dilworth TF. The nerves of the human larynx. J Anat. 1921;56:48–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bjorck G, Margolin G, Maback GM, Persson JK, Mattsson P, Hydman J. New animal model for assessment of functional laryngeal motor innervation. Ann Otol Rhinol Laryngol. 2012;121:695–9.

    Article  PubMed  Google Scholar 

  20. Hydman J, Mattsson P. Collateral reinnervation by the superior laryngeal nerve after recurrent laryngeal nerve injury. Muscle Nerve. 2008;38:1280–9.

    Article  PubMed  Google Scholar 

  21. Monfared A, Kim D, Jaikumar S, Gorti G, Kam A. Microsurgical anatomy of the superior and recurrent laryngeal nerves. Neurosurgery. 2001;49:925–32; discussion 932–3.

    CAS  PubMed  Google Scholar 

  22. Shaw GY, Searl JP, Hoover LA. Diagnosis and treatment of unilateral cricothyroid muscle paralysis with a modified Isshiki type 4 thyroplasty. Otolaryngol Head Neck Surg. 1995;113:679–88.

    Article  CAS  PubMed  Google Scholar 

  23. Wu BL, Sanders I, Mu L, Biller HF. The human communicating nerve. An extension of the external superior laryngeal nerve that innervates the vocal cord. Arch Otolaryngol Head Neck Surg. 1994;120:1321–8.

    Article  CAS  PubMed  Google Scholar 

  24. Maranillo E, Leon X, Quer M, Orus C, Sanudo JR. Is the external laryngeal nerve an exclusively motor nerve? The cricothyroid connection branch. Laryngoscope. 2003;113:525–9.

    Article  PubMed  Google Scholar 

  25. Barczynski M, Randolph GW, Cernea CR, et al. External branch of the superior laryngeal nerve monitoring during thyroid and parathyroid surgery: International Neural Monitoring Study Group standards guideline statement. Laryngoscope. 2013;123 Suppl 4:S1–14.

    Article  PubMed  Google Scholar 

  26. Orestes MI, Chhetri DK. Superior laryngeal nerve injury: effects, clinical findings, prognosis, and management options. Curr Opin Otolaryngol Head Neck Surg. 2014;22:439–43.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practices. Oxford: Oxford University Press; 2001.

    Google Scholar 

  28. Hydman J, Bjorck G, Persson JK, Zedenius J, Mattsson P. Diagnosis and prognosis of iatrogenic injury of the recurrent laryngeal nerve. Ann Otol Rhinol Laryngol. 2009;118:506–11.

    Article  PubMed  Google Scholar 

  29. Schwab ME. Nogo and axon regeneration. Curr Opin Neurobiol. 2004;14:118–24.

    Article  CAS  PubMed  Google Scholar 

  30. DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience. 2014;302:174–203.

    Article  PubMed  Google Scholar 

  31. Fawcett JW, Keynes RJ. Peripheral nerve regeneration. Annu Rev Neurosci. 1990;13:43–60.

    Article  CAS  PubMed  Google Scholar 

  32. Ide C. Peripheral nerve regeneration. Neurosci Res. 1996;25:101–21.

    Article  CAS  PubMed  Google Scholar 

  33. Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol. 2014;50:945–70.

    Article  CAS  PubMed  Google Scholar 

  34. Scheib J, Hoke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9:668–76.

    Article  CAS  PubMed  Google Scholar 

  35. Cajal YR. Degeneration and regeneration of the nervous system. Oxford: Oxford University Press; 1928.

    Google Scholar 

  36. Waller A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibers. Philos Trans R Soc Lond (Biol). 1850;140:423–9.

    Article  Google Scholar 

  37. Fournier AE, Strittmatter SM. Regenerating nerves follow the road more traveled. Nat Neurosci. 2002;5:821–2.

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen QT, Sanes JR, Lichtman JW. Pre-existing pathways promote precise projection patterns. Nat Neurosci. 2002;5:861–7.

    Article  CAS  PubMed  Google Scholar 

  39. Aldskogius H, Svensson M. Neuronal and glial cell responses to axon injury. Adv Struct Biol. 1993;2:191–223.

    Google Scholar 

  40. Svensson M, Aldskogius H. The effect of axon injury on microtubule-associated proteins MAP2, 3 and 5 in the hypoglossal nucleus of the adult rat. J Neurocytol. 1992;21:222–31.

    Article  CAS  PubMed  Google Scholar 

  41. Svensson M, Eriksson P, Persson JK, Molander C, Arvidsson J, Aldskogius H. The response of central glia to peripheral nerve injury. Brain Res Bull. 1993;30:499–506.

    Article  CAS  PubMed  Google Scholar 

  42. Oppenheim RW, Houenou LJ, Johnson JE, et al. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF [see comments]. Nature. 1995;373:344–6.

    Article  CAS  PubMed  Google Scholar 

  43. Oppenheim RW, Yin QW, Prevette D, Yan Q. Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature. 1992;360:755–7.

    Article  CAS  PubMed  Google Scholar 

  44. Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde YA. Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature. 1992;360:757–9.

    Article  CAS  PubMed  Google Scholar 

  45. Sendtner M, Kreutzberg GW, Thoenen H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature. 1990;345:440–1.

    Article  CAS  PubMed  Google Scholar 

  46. Hydman J, Svensson M, Kuylenstierna R, Ohlsson M, Mattsson P. Neuronal survival and glial reactions after recurrent laryngeal nerve resection in the rat. Laryngoscope. 2005;115:619–24.

    Article  CAS  PubMed  Google Scholar 

  47. Blinzinger K, Kreutzberg G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat. 1968;85:145–57.

    Article  CAS  PubMed  Google Scholar 

  48. Snyder SK, Lairmore TC, Hendricks JC, Roberts JW. Elucidating mechanisms of recurrent laryngeal nerve injury during thyroidectomy and parathyroidectomy. J Am Coll Surg. 2008;206(1):123–30.

    Article  PubMed  Google Scholar 

  49. Chiang FY, Lu IC, Kuo WR, Lee KW, Chang NC, Wu CW. The mechanism of recurrent laryngeal nerve injury during thyroid surgery—the application of intraoperative neuromonitoring. Surgery. 2008;143(6):743–9.

    Article  PubMed  Google Scholar 

  50. Dionigi G, Alesina PF, Barczynski M, et al. Recurrent laryngeal nerve injury in video-assisted thyroidectomy: lessons learned from neuromonitoring. Surg Endosc. 2012;26:2601–8.

    Article  CAS  PubMed  Google Scholar 

  51. Dionigi G, Boni L, Rovera F, Rausei S, Castelnuovo P, Dionigi R. Postoperative laryngoscopy in thyroid surgery: proper timing to detect recurrent laryngeal nerve injury. Langenbecks Arch Surg. 2010;395(4):327–31.

    Article  PubMed  Google Scholar 

  52. Bergenfelz A, Jansson S, Kristoffersson A, Mårtensson H, Reihnér E, Wallin G, Lausen I. Complications to thyroid surgery: results as reported in a database from a multicenter audit comprising 3,660 patients. Langenbecks Arch Surg. 2008;393(5):667–73.

    Article  CAS  PubMed  Google Scholar 

  53. Reeve T, Thompson NW. Complications of thyroid surgery: how to avoid them, how to manage them, and observations on their possible effect on the whole patient. World J Surg. 2000;24:971–5.

    Article  CAS  PubMed  Google Scholar 

  54. Jiang H, Shen H, Jiang D, Zheng X, Zhang W, Lu L, Jiang Z, Qiu M. Evaluating the safety of the Harmonic Scalpel around the recurrent laryngeal nerve. ANZ J Surg. 2010;80(11):822–6.

    Article  PubMed  Google Scholar 

  55. Genther DJ, Kandil EH, Noureldine SI, Tufano RP. Correlation of final evoked potential amplitudes on intraoperative electromyography of the recurrent laryngeal nerve with immediate postoperative vocal fold function after thyroid and parathyroid surgery. JAMA Otolaryngol Head Neck Surg. 2014;140(2):124–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Faaborg-Andersen K, Buchthal F. Action potentials from internal laryngeal muscles during phonation. Nature. 1956;177:340–1.

    Article  CAS  PubMed  Google Scholar 

  57. Blitzer A, Crumley RL, Dailey SH, et al. Recommendations of the Neurolaryngology Study Group on laryngeal electromyography. Otolaryngol Head Neck Surg. 2009;140:782–93.

    Article  PubMed  Google Scholar 

  58. Rickert SM, Childs LF, Carey BT, Murry T, Sulica L. Laryngeal electromyography for prognosis of vocal fold palsy: a meta-analysis. Laryngoscope. 2012;122:158–61.

    Article  PubMed  Google Scholar 

  59. Smith LJ, Rosen CA, Niyonkuru C, Munin MC. Quantitative electromyography improves prediction in vocal fold paralysis. Laryngoscope. 2012;122:854–9.

    Article  PubMed  Google Scholar 

  60. Wang CC, Chang MH, De Virgilio A, et al. Laryngeal electromyography and prognosis of unilateral vocal fold paralysis—a long-term prospective study. Laryngoscope. 2015;125(4):898–903.

    Article  PubMed  Google Scholar 

  61. Wang CC, Chang MH, Wang CP, Liu SA. Prognostic indicators of unilateral vocal fold paralysis. Arch Otolaryngol Head Neck Surg. 2008;134:380–8.

    Article  PubMed  Google Scholar 

  62. Crumley RL. Repair of the recurrent laryngeal nerve. Otolaryngol Clin North Am. 1990;23:553–63.

    CAS  PubMed  Google Scholar 

  63. Volk GF, Hagen R, Pototschnig C, et al. Laryngeal electromyography: a proposal for guidelines of the European Laryngological Society. Eur Arch Otorhinolaryngol. 2012;269:2227–45.

    Article  PubMed  Google Scholar 

  64. Hermann M, Alk G, Roka R, Glaser K, Freissmuth M. Laryngeal recurrent nerve injury in surgery for benign thyroid diseases: effect of nerve dissection and impact of individual surgeon in more than 27,000 nerves at risk. Ann Surg. 2002;235(2):261–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Randolph GW. Surgical anatomy of the recurrent laryngeal nerve. In: Randolph GW, editor. Surgery of the thyroid and parathyroid glands. Philadelphia: Elsevier Science; 2003.

    Google Scholar 

  66. Dralle H, Sekulla C, Lorenz K, Brauckhoff M, Machens A, German IONM Study Group. Intraoperative monitoring of the recurrent laryngeal nerve in thyroid surgery. World J Surg. 2008;32(7):1358–66.

    Article  CAS  PubMed  Google Scholar 

  67. Dionigi G, Boni L, Rovera F, Bacuzzi A, Dionigi R. Neuromonitoring and video-assisted thyroidectomy: a prospective, randomized case-control evaluation. Surg Endosc. 2009;23(5):996–1003.

    Article  PubMed  Google Scholar 

  68. Lo CY, Kwok KF, Yuen PW. A prospective evaluation of recurrent laryngeal nerve paralysis during thyroidectomy. Arch Surg. 2000;135(2):204–7.

    Article  CAS  PubMed  Google Scholar 

  69. Caldarelli DD, Holinger LD. Complications and sequelae of thyroid surgery. Otolaryngol Clin North Am. 1980;13(1):85–97.

    CAS  PubMed  Google Scholar 

  70. Patlow C, Norton J, Brennan M. Vocal cord paralysis and reoperative parathyroidectomy. Ann Surg. 1986;203:282.

    Article  Google Scholar 

  71. Wang LF, Lee KW, Kuo WR, Wu CW, Lu SP, Chiang FY. The efficacy of intraoperative corticosteroids in recurrent laryngeal nerve palsy after thyroid surgery. World J Surg. 2006;30(3):299–303.

    Article  PubMed  Google Scholar 

  72. van der Zee CE, Schuurman T, Traber J, Gispen WH. Oral administration of nimodipine accelerates functional recovery following peripheral nerve damage in the rat. Neurosci Lett. 1987;83:143–8.

    Article  PubMed  Google Scholar 

  73. Angelov DN, Neiss WF, Streppel M, Andermahr J, Mader K, Stennert E. Nimodipine accelerates axonal sprouting after surgical repair of rat facial nerve. J Neurosci. 1996;16:1041–8.

    CAS  PubMed  Google Scholar 

  74. Mattsson P, Aldskogius H, Svensson M. Nimodipine-induced improved survival rate of facial motor neurons following intracranial transection of the facial nerve in the adult rat. J Neurosurg. 1999;90:760–5.

    Article  CAS  PubMed  Google Scholar 

  75. Crumley RL. Laryngeal synkinesis revisited. Ann Otol Rhinol Laryngol. 2000;109:365–71.

    Article  CAS  PubMed  Google Scholar 

  76. Kater SB, Mattson MP, Cohan C, Connor J. Calcium regulation of the neuronal growth cone. Trends Neurosci. 1988;11:315–21.

    Article  CAS  PubMed  Google Scholar 

  77. Kater SB, Mills LR. Regulation of growth cone behaviour by calcium. J Neurosci. 1991;11:891–9.

    CAS  PubMed  Google Scholar 

  78. Gomez TM, Spitzer NC. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature. 1999;397:350–5.

    Article  CAS  PubMed  Google Scholar 

  79. Gomez TM, Spitzer NC. Regulation of growth cone behavior by calcium: new dynamics to earlier perspectives. J Neurobiol. 2000;44:174–83.

    Article  CAS  PubMed  Google Scholar 

  80. Gomez TM, Zheng JQ. The molecular basis for calcium-dependent axon pathfinding. Nat Rev Neurosci. 2006;7:115–25.

    Article  CAS  PubMed  Google Scholar 

  81. Van den Kerckhoff W, Drewes LR. Transfer of the calcium antagonists nifedipine and nimodipine across the blood brain barrier and their regional distribution in vivo. J Cereb Blood Flow Metab. 1985;5(Suppl1):459–60.

    Google Scholar 

  82. Mattsson P, Janson AM, Aldskogius H, Svensson M. Nimodipine promotes regeneration and functional recovery after intracranial facial nerve crush. J Comp Neurol. 2001;437:106–17.

    Article  CAS  PubMed  Google Scholar 

  83. Angelov DN, Neiss WF, Gunkel A, Streppel M, Guntinaslichius O, Stennert E. Nimodipine-accelerated hypoglossal sprouting prevents the postoperative hyperinnervation of target muscles after hypoglossal-facial anastomosis in the rat. Restor Neurol Neurosci. 1997;11:109–21.

    CAS  PubMed  Google Scholar 

  84. Hydman J, Remahl S, Bjorck G, Svensson M, Mattsson P. Nimodipine improves reinnervation and neuromuscular function after injury to the recurrent laryngeal nerve in the rat. Ann Otol Rhinol Laryngol. 2007;116:623–30.

    Article  PubMed  Google Scholar 

  85. Mattsson P, Bjorck G, Remahl S, et al. Nimodipine and microsurgery induced recovery of the vocal cord after recurrent laryngeal nerve resection. Laryngoscope. 2005;115:1863–5.

    Article  CAS  PubMed  Google Scholar 

  86. Rosen CA, Smith L, Young V, Krishna P, Muldoon MF, Munin MC. Prospective investigation of nimodipine for acute vocal fold paralysis. Muscle Nerve. 2014;50:114–8.

    Article  CAS  PubMed  Google Scholar 

  87. Sridharan SS, Rosen CA, Smith LJ, Young VN, Munin MC. Timing of nimodipine therapy for the treatment of vocal fold paralysis. Laryngoscope. 2015;125:186–90.

    Article  CAS  PubMed  Google Scholar 

  88. Scheller C, Richter HP, Engelhardt M, Koenig R, Antoniadis G. The influence of prophylactic vasoactive treatment on cochlear and facial nerve functions after vestibular schwannoma surgery: a prospective and open-label randomized pilot study. Neurosurgery. 2007;61:92–7; discussion 97–8.

    Article  PubMed  Google Scholar 

  89. Scheller C, Wienke A, Wurm F, et al. Neuroprotective efficacy of prophylactic enteral and parenteral nimodipine treatment in vestibular schwannoma surgery: a comparative study. J Neurol Surg A Cen Eur Neurosurg. 2014;75:251–8.

    Google Scholar 

  90. Scheller K, Scheller C. Nimodipine promotes regeneration of peripheral facial nerve function after traumatic injury following maxillofacial surgery: an off label pilot-study. J Craniomaxillofac Surg. 2012;40:427–34.

    Article  CAS  PubMed  Google Scholar 

  91. Scheller K, Scheller C. Nimodipine for peripheral nerve recovery after maxillofacial and vestibular schwannoma surgery. Muscle Nerve. 2014;50:1026–7.

    Article  CAS  PubMed  Google Scholar 

  92. Strauss C, Romstock J, Fahlbusch R, Rampp S, Scheller C. Preservation of facial nerve function after postoperative vasoactive treatment in vestibular schwannoma surgery. Neurosurgery. 2006;59:577–84; discussion 577–84.

    Article  PubMed  Google Scholar 

  93. Li L, Oppenheim RW, Lei M, Houenou LJ. Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse. J Neurobiol. 1994;25:759–66.

    Article  CAS  PubMed  Google Scholar 

  94. Li L, Wu W, Lin LF, Lei M, Oppenheim RW, Houenou LJ. Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. Proc Natl Acad Sci U S A. 1995;92:9771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lo AC, Li L, Oppenheim RW, Prevette D, Houenou LJ. Ciliary neurotrophic factor promotes the survival of spinal sensory neurons following axotomy but not during the period of programmed cell death. Exp Neurol. 1995;134:49–55.

    Article  CAS  PubMed  Google Scholar 

  96. Sendtner M, Dittrich F, Hughes RA, Thoenen H. Actions of CNTF and neurotrophins on degenerating motoneurons: preclinical studies and clinical implications. J Neurol Sci. 1994;124:77–83.

    Article  CAS  PubMed  Google Scholar 

  97. Verge VM, Gratto KA, Karchewski LA, Richardson PM. Neurotrophins and nerve injury in the adult. Philos Trans R Soc Lond B Biol Sci. 1996;351:423–30.

    Article  CAS  PubMed  Google Scholar 

  98. Mattsson P, Aldskogius H, Svensson M. The novel pyrrolopyrimidine PNU-101033-E improves facial motor neuron survival following intracranial axotomy of the facial nerve in the adult rat. J Neurotrauma. 1999;16:793–803.

    Article  CAS  PubMed  Google Scholar 

  99. Short DJ, El Masry WS, Jones PW. High dose methylprednisolone in the management of acute spinal cord injury—a systematic review from a clinical perspective. Spinal Cord. 2000;38:273–86.

    Article  CAS  PubMed  Google Scholar 

  100. Schietroma M, Cecilia EM, Carlei F, et al. Dexamethasone for the prevention of recurrent laryngeal nerve palsy and other complications after thyroid surgery: a randomized double-blind placebo-controlled trial. JAMA Otolaryngol Head Neck Surg. 2013;139:471–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianlorenzo Dionigi M.D., F.A.C.S., Ph.D. .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

RLN segmental type 1 injury due to traction. Nerve injury is neither appreciated by surgeon eye nor by high definition endoscopy magnification. By means of IONM, the surgeon identifies the site of injury: the RLN loses stimulation proximal to the point of traction injury and retains nerve stimulation distal to the point of traction injury. Subsequent VN stimulation is negative (AVI 37675 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dionigi, G., Randolph, G.W., Mattsson, P. (2016). Intraoperative Neural Injury Management: Neuropraxic Non-transection Injury. In: Randolph, G. (eds) The Recurrent and Superior Laryngeal Nerves. Springer, Cham. https://doi.org/10.1007/978-3-319-27727-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27727-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27725-7

  • Online ISBN: 978-3-319-27727-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics