Skip to main content

Ambient Intelligence

  • Living reference work entry
  • First Online:
Handbook of Human Computer Interaction

Abstract

In an era where technology celebrated steep growth and its applications were promoted by lengthy lists of technical features, a need for a more human-centric approach toward technology and application development emerged. Situated in the late 1990s, the endless fascination with technological developments made room for some critical reflection on the role and impact that the application of these technologies would have on people. At the turn of the century, researchers identified the potentially devastating effects of rapid technological developments for the balanced relationship between humans and technology. A need for changing the focus from technology development toward understanding the effect and impact of technology applications was identified. In this chapter, we discuss the context and impact of the concept of Ambient Intelligence (AmI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aarts E, Appelo L (1999) Ambient Intelligence: thuisomgevingen van de toekomst. IT Monitor 9(99):7–11

    Google Scholar 

  • Aarts E, De Ruyter B (2009) New research perspectives on ambient intelligence. J Ambient Intell Smart Environ 1(1):5–14

    Article  Google Scholar 

  • Aarts E, Harwig R, Schuurmans M (2001) Ambient intelligence. In: Denning P (ed) The invisible future. McGraw Hill, New York. page 235250

    Google Scholar 

  • Ahmed S, Ilyas M, Raja MYA (2019, October) Smart living: Ubiquitous services powered by ambient intelligence (AmI). In: 2019 IEEE 16th international conference on smart cities: improving quality of life using ICT & IoT and AI (HONET-ICT). IEEE, pp 043–048

    Google Scholar 

  • Akata Z, Balliet D, De Rijke M, Dignum F, Dignum V, Eiben G, Fokkens A, Grossi D, Hindriks K, Hoos H, Hung H, Jonker C, Monmz C, Neerincx M, Oliehoek F, Prakken H (2020) A research agenda for hybrid intelligence: augmenting human intellect with collaborative, adaptive, responsible, and explainable artificial intelligence. Computer 53(08):18–28

    Article  Google Scholar 

  • Alshamaila Y, Papagiannidis S, Alsawalqah H, Aljarah I (2023) Effective use of smart cities in crisis cases: a systematic review of the literature. Int J Disaster Risk Reduct 103521:103521

    Article  Google Scholar 

  • Aly S, Pelikán M, Vrana I (2014) A generalized model for quantifying the impact of ambient intelligence on smart workplaces: applications in manufacturing. J Ambient Intell Smart Environ 6(6):651–673

    Article  Google Scholar 

  • Augusto JC (2009) Ambient intelligence: opportunities and consequences of its use in smart classrooms. Innov Teach Learn Inform Comput Sci 8(2):53–63

    Google Scholar 

  • Augusto JC, Nakashima H, Aghajan H (2010) Ambient intelligence and smart environments: a state of the art. In: Handbook of ambient intelligence and smart environments. Springer, pp 3–31

    Chapter  Google Scholar 

  • Baroroh DK, Chu CH, Wang L (2021) Systematic literature review on augmented reality in smart manufacturing: collaboration between human and computational intelligence. J Manuf Syst 61:696–711

    Article  Google Scholar 

  • Bellotti V, Edwards K (2001) Intelligibility and accountability: human considerations in context aware systems. Hum Comput Interact 16:193–212

    Article  Google Scholar 

  • Bernhaupt R, Obrist M, Weiss A, Beck E, Tscheligi M (2007) Trends in the living room and beyond. In: Cesar P, Chorianopoulos K, Jensen J (eds) Lecture notes in computer science. Springer-Verlag, pp 146–155

    Google Scholar 

  • Beyer H, Holtzblatt K (2017) Contextual design (second edition) – design for life. Morgan Kaufmann Academic Press, San Diego

    Google Scholar 

  • Beyer H, Holzblatt K (1998) Contextual design. Academic Press, San Diego

    Google Scholar 

  • Butz A (2010) User interfaces and HCI for ambient intelligence and smart environments. In: Handbook of ambient intelligence and smart environments. Springer, Boston, MA, pp 535–558

    Chapter  Google Scholar 

  • Calvaresi D, Cesarini D, Sernani P, Marinoni M, Dragoni AF, Sturm A (2017) Exploring the ambient assisted living domain: a systematic review. J Ambient Intell Humaniz Comput 8:239–257

    Article  Google Scholar 

  • Campos W, Martinez A, Sanchez W, Estrada H, Castro-Sánchez NA, Mujica D (2016) A systematic review of proposals for the social integration of elderly people using ambient intelligence and social networking sites. Cogn Comput 8:529–542

    Article  Google Scholar 

  • Cassens J, Wegener R (2019) Ambient explanations: ambient intelligence and explainable AI. In: Chatzigiannakis I et al (eds) AmI 2019, LNCS 11912, pp 370–376. https://doi.org/10.1007/978-3-030-34255-5_30

    Chapter  Google Scholar 

  • Chen X, Zou D, Xie H, Wang FL (2021) Past, present, and future of smart learning: a topic-based bibliometric analysis. Int J Educ Technol High Educ 18:1–29

    Article  Google Scholar 

  • Coeckelbergh M (2020) AI ethics. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Cook DJ, Augusto JC, Jakkula VR (2009) Ambient intelligence: Technologies, applications, and opportunities. Pervasive Mob Comput 5(4):277–298

    Google Scholar 

  • Cope B, Kalantzis M, Searsmith D (2021) Artificial intelligence for education: knowledge and its assessment in AI-enabled learning ecologies. Educ Philos Theory 53(12):1229–1245

    Article  Google Scholar 

  • D'Aniello G (2023) Fuzzy logic for situation awareness: A systematic review. J Ambient Intell Humaniz Comput 14(4):4419–4438

    Google Scholar 

  • De Ruyter B (2003) User centred design. In: Aarts E, Marzano S (eds) The new everyday: vision on ambient intelligence. 010 Publishers, Rotterdam, The Netherlands

    Google Scholar 

  • De Ruyter B, Saini P, Markopoulos P, van Breemen A (2005) Assessing the effects of building social intelligence in a robotic interface for the home. Interact Comput 17:522–541. Elsevier

    Article  Google Scholar 

  • Demir KA, Turan B, Onel T, Ekin T, Demir S (2019) Ambient intelligence in business environments and internet of things transformation guidelines. In: Mahmood, Z. (eds) Guide to ambient intelligence in the IoT environment: principles, technologies and applications, Computer Communications and Networks. Springer, Cham, pp 39–67. https://doi.org/10.1007/978-3-030-04173-1_3

    Chapter  Google Scholar 

  • Dix A, Finlay J, Abowd G, Beale R (2004) Human-computer interaction. Pearson Education, Harlow

    Google Scholar 

  • Doherty G, McKnight J, Luz S (2010) Fieldwork for requirements: frameworks for mobile healthcare applications. Int J Hum-Comput Stud 68(10):760–776

    Article  Google Scholar 

  • Dourish P (2004) What we talk about when we talk about context. Pers Ubiquit Comput 8(1):19–30

    Article  Google Scholar 

  • Durães D, Bajo J, Novais P (2019) Supervising attention in an e-learning system. In: Ambient intelligence – software and applications – 9th international symposium on ambient intelligence. Springer International Publishing, pp 389–396

    Chapter  Google Scholar 

  • Eggen J, Hollemans G, Van De Sluis B (2003) Exploring and enhancing the home experience, Cognition. Technol Work 5(1):44–54

    Article  Google Scholar 

  • Facchinetti G, Petrucci G, Albanesi B, De Marinis MG, Piredda M (2023) Can smart home technologies help older adults manage their chronic condition? A systematic literature review. Int J Environ Res Public Health 20(2):1205

    Article  Google Scholar 

  • Feurstein K, Hesmer A, Hribernik KA, Thoben KD, Schumacher J (2008) Living labs: a new development strategy. In: European living labs – a new approach for human centric regional innovation. Wissenschaftlicher Verlag, Berlin, pp 1–14

    Google Scholar 

  • Fogli D, Lanzilotti R, Piccinno A (2016) End-user development tools for the smart home: a systematic literature review. In: Distributed, ambient and pervasive interactions: 4th international conference, DAPI 2016, held as part of HCI international 2016., Toronto, ON, Canada, July 17–22, 2016, proceedings 4. Springer International Publishing, pp 69–79

    Chapter  Google Scholar 

  • Gajjar MJ (2017) Mobile sensors and context-aware computing. Morgan Kaufmann, Cambridge, MA

    Google Scholar 

  • Gams M, Gu IYH, Härmä A, Muñoz A, Tam V (2019) Artificial intelligence and ambient intelligence. J Ambient Intell Smart Environ 11(1):71–86

    Article  Google Scholar 

  • Gaver B, Dunne T, Pacenti E (1999) Design: Cultural probes. Interactions 6(1):21–29

    Article  Google Scholar 

  • German S, Metternicht G, Laffan S, Hawken S (2023) Intelligent spatial technologies for gender inclusive urban environments in today’s smart cities. Intell Environ 1:285–322

    Google Scholar 

  • Gibbons M, Limoges C, Nowotny H, Schwartzman S, Scott P, Trow P (1994) The new production of knowledge: The dynamics of science and research in contemporary societies. Sage Publishing, London, UK

    Google Scholar 

  • Gimenez Manuel JG, Augusto JC, Stewart J (2022) AnAbEL: towards empowering people living with dementia in ambient assisted living. Univ Access Inf Soc 21(2):457–476

    Article  Google Scholar 

  • Gladence LM, Anu VM, Rathna R, Brumancia E (2020) Recommender system for home automation using IoT and artificial intelligence. J Ambient Intell Humaniz Comput 19:1–9

    Google Scholar 

  • Godwin-Jones R (2023) Emerging spaces for language learning: AI bots, ambient intelligence, and the metaverse. Lang Learn Technol 27(2)

    Google Scholar 

  • Goyal S, Sharma N, Bhushan B, Shankar A, Sagayam M (2021) IoT enabled technology in secured healthcare: applications, challenges and future directions. In: Hassanien AE, Khamparia A, Gupta D, Shankar K, Slowik A (eds) Cognitive internet of medical things for smart healthcare: Studies in Systems, Decision and Control, vol 311, pp 25–48. Springer, Cham. https://doi.org/10.1007/978-3-030-55833-8_2

    Chapter  Google Scholar 

  • Green W, de Ruyter B (2010) The design and evaluation of interactive systems with perceived social intelligence: five challenges. AI & Soc 25:203–210

    Article  Google Scholar 

  • Greve K, Leminen S, De Vita R, Westerlund M (2020) Unveiling the diversity of scholarly debate on living labs: a bibliometric approach. Int J Innov Manag 24(08):2040003

    Article  Google Scholar 

  • Grieves MW (2015) Digital twin: manufacturing excellence through virtual factory replication: a white paper by Dr. Micheal Grieves, 2015, [online]. https://www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory_Replication

  • Guerra BMV, Schmid M, Beltrami G, Ramat S (2022) Neural networks for automatic posture recognition in ambient-assisted living. Sensors 22(7):2609

    Article  Google Scholar 

  • Gumbheer CP, Khedo KK, Bungaleea A (2022) Personalized and adaptive context-aware mobile learning: review, challenges and future directions. Educ Inf Technol 27(6):7491–7517

    Article  Google Scholar 

  • Gunning D, Aha D (2019) DARPA’s explainable artificial intelligence (XAI) program. AI Mag 40(2):44–58

    Google Scholar 

  • Halliday MAK (1992) New ways of meaning: the challenge to applied linguistics. In: Putz M (ed) Thirty years of linguistic evolution. John Benjamins Publishing Co, Philadelphia/Amsterdam

    Google Scholar 

  • Hasanov A, Laine TH, Chung TS (2019) A survey of adaptive context-aware learning environments. J Ambient Intell Smart Environ 11(5):403–428

    Article  Google Scholar 

  • Herrera F, Niño R, Montenegro-Marín CE, Gaona-García PA, de Mendívil ISM, Crespo RG (2021) Computational method for monitoring pauses exercises in office workers through a vision model. J Ambient Intell Humaniz Comput 12:3389–3397

    Article  Google Scholar 

  • Hogan R (1969) Development of an empathy scale. J Consult Clin Psychol 33:307–316

    Article  Google Scholar 

  • Hristov PO, Petrova-Antonova D, Ilieva S, Rizov R (2022) Enabling City digital twins through urban living labs. Int Arch Photogramm Remote Sens Spat Inf Sci 43:151–156

    Article  Google Scholar 

  • Iqbal R, Gatward R, James A (2005) Ethnomodel: an approach for developing and evaluating CSCW systems. In: Intelligent data acquisition and advanced computing systems: technology and applications. IEEE, Sofia, pp 633–638

    Google Scholar 

  • Ishii H (2008) The tangible user interface and its evolution. Commun ACM 51(6):32–36

    Article  Google Scholar 

  • Ishii H, Ullmer B (1997) Tangible bits: Towards seamless interfaces between people, bits and atoms. In: Proceedings of the ACM SIGCHI conference on human factors in computing systems, pp 234–241. Sig CHI 1997 Atlanta GA USA Copyright 1997 ACM 0-89791-802-9/97/03

    Google Scholar 

  • Jones D, Snider C, Nassehi A, Yon J, Hicks B (2020) Characterising the digital twin: a systematic literature review. CIRP J Manuf Sci Technol 29:36–52

    Article  Google Scholar 

  • Kolenik T, Gjoreski M, Gams M (2020) PerMEASS-personal mental health virtual assistant with novel ambient intelligence integration. In: AAI4H@ ECAI, Santiago De Compostella (online), pp 8–12. Advances in Artificial Intelligence for Healthcare, Virtual Workshop held online at ECAI 2020 Virtual

    Google Scholar 

  • Krishnamoorthy S, Dua A, Gupta S (2023) Role of emerging technologies in future IoT-driven healthcare 4.0 technologies: a survey, current challenges and future directions. J Ambient Intell Humaniz Comput 14(1):361–407

    Article  Google Scholar 

  • Kudina O, Coeckelbergh M (2021) “Alexa, define empowerment”: voice assistants at home, appropriation and technoperformances. J Inf Commun Ethics Soc 19:299–312

    Article  Google Scholar 

  • Kumar Y, Koul A, Singla R, Ijaz MF (2022) Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput 14:1–28

    Google Scholar 

  • Kussl S, Wald A (2023) Smart mobility and its implications for road infrastructure provision: a systematic literature review. Sustainability 15(1):210

    Article  Google Scholar 

  • Law E, Vermeeren A, Hassenzahl M, Blythe M (2007) Proceedings of the workshop towards a ux manifesto. Proceedings of HCI Conference 2007

    Google Scholar 

  • Leake DB (1995) Goal-based explanation evaluation. In: Goal-driven learning. MIT Press, Cambridge, pp 251–285

    Chapter  Google Scholar 

  • Lee JD, See KA (2004) Trust in automation: designing for appropriate reliance. Hum Factors 46(1):50–80

    Article  Google Scholar 

  • Lim KYH, Zheng P, Chen CH (2020) A state-of-the-art survey of digital twin: techniques, engineering product lifecycle management and business innovation perspectives. J Intell Manuf 31(6):1313–1337

    Article  Google Scholar 

  • Marcelino R, Espíndola BP, Rampinelli GA, Gruber V, Gonçalves AL, da Silva Ferraz Filho, B., ... Ferreira, D. K. (2022). Smart and efficient greenhouses: a systematic literature review in the agronomic, computational, and energy scope

    Google Scholar 

  • Markopoulos P, Mavrommati I, Kameas A (2004) End-user configuration of ambient intelligence environments: feasibility from a user perspective. In: European symposium on ambient intelligence. Springer, Berlin, Heidelberg, pp 243–254

    Chapter  Google Scholar 

  • Martinez-Martin N, Luo Z, Kaushal A, Adeli E, Haque A, Kelly SS ... Milstein A (2021) Ethical issues in using ambient intelligence in health-care settings. Lancet Digit Health 3(2):e115–e123

    Google Scholar 

  • McKenna HP, editor (2022) Urban life and the ambient in smart cities, learning cities, and future cities. IGI Global

    Google Scholar 

  • Mekuria DN, Sernani P, Falcionelli N, Dragoni AF (2021) Smart home reasoning systems: a systematic literature review. J Ambient Intell Humaniz Comput 12:4485–4502

    Article  Google Scholar 

  • Mezhoudi N, Alghamdi R, Aljunaid R, Krichna G, Düştegör D (2023) Employability prediction: a survey of current approaches, research challenges and applications. J Ambient Intell Humaniz Comput 14(3):1489–1505

    Google Scholar 

  • Milgram P, Kishino F (1994) A taxonomy of mixed reality visual displays. IEICE Trans Inf Syst 77(12):1321–1329

    Google Scholar 

  • Montebello M (2019) The ambient intelligent classroom: beyond the indispensable educator, vol 840. Springer

    Google Scholar 

  • Morris T, Dodge H, Cerel-Suhl S, Zhao X (2023, February) Social Robots to support assisted living for persons with Alzheimer’s and related dementias. In Social robotics: 14th international conference, ICSR 2022, Florence, Italy, December 13–16, 2022, proceedings, part II. Springer Nature Switzerland, Cham, pp 228–237

    Google Scholar 

  • Neustaedter C, Brush A, Greenberg S (2007) A digital family calendar in the home: lessons from field trials of LINC. Proc Graph Interface 234:199–120

    Google Scholar 

  • Oinas-Kukkonen H, Harjumaa M (2009) Persuasive systems design: key issues, process model, and system features. Commun Assoc Inf Syst 24(1):28

    Google Scholar 

  • Pan Y, Zhang L (2022) Integrating BIM and AI for smart construction management: current status and future directions. Arch Comput Methods Eng 30:1–30

    Google Scholar 

  • Pieters W (2011) Explanation and trust: what to tell the user in security and AI? Ethics Inf Technol 13(1):53–64

    Article  Google Scholar 

  • Pine J, Gilmore J (1999) The experience economy. Harvard Business School Press, Boston

    Google Scholar 

  • Poslad S (2009) Ubiquitous computing: smart devices, environments and interactions. Wiley

    Book  Google Scholar 

  • Postma C, Lauche K, Stappers P (2009) Trialogues: a framework for bridging the gap between people research and design. In: Proceedings of designing pleasurable products and interfaces, pp 25–34

    Google Scholar 

  • Quigley A (2009) From GUI to UUI: interfaces for ubiquitous computing. In: Ubiquitous computing fundamentals. Chapman and Hall/CRC, pp 251–298

    Google Scholar 

  • Radosavljevic V, Radosavljevic S, Jelic G (2022) Ambient intelligence-based smart classroom model. Interact Learn Environ 30(2):307–321

    Article  Google Scholar 

  • Rose A, Shneiderman B, Plaisant C (1995) An applied ethnographic method for redesigning user interfaces. In: Proceedings of the 1st conference on designing interactive systems: processes, practices, methods, and techniques, pp 115–122

    Chapter  Google Scholar 

  • Russell DM, Streitz NA, Winograd T (2005) Building disappearing computers. Commun ACM 48(3):42–48

    Article  Google Scholar 

  • Sah DK, Poongodi M, Donta PK, Hamdi M, Cengiz K, Kamruzzaman MM, Rauf HT (2022) Secured wireless energy transfer for the internet of everything in ambient intelligent environments. IEEE Internet Things Magaz 5(1):62–66

    Google Scholar 

  • Satyanarayanan M (2001) Pervasive computing: vision and challenges. IEEE Pers Commun 8(4):10–17

    Article  Google Scholar 

  • Schank RC (1983) Dynamic memory: a theory of reminding and learning in computers and people. Cambridge University Press, Cambridge

    Google Scholar 

  • Sebe N (2010) Human-centered computing. In: Handbook of ambient intelligence and smart environments. Springer, Boston, MA, pp 349–370

    Chapter  Google Scholar 

  • Short J, Williams E, Christie B (1976) The psychology of telecommunication. Wiley, London

    Google Scholar 

  • Spoladore D, Trombetta A (2023) Ambient assisted working solutions for the ageing workforce: a literature review. Electronics 12(1):101

    Article  Google Scholar 

  • Stratakis C, Stivaktakis NM, Bouloukakis M, Leonidis A, Doxastaki M, Kapnas G ... Stephanidis C (2022) Integrating ambient intelligence technologies for empowering agriculture. Eng Proc 9(1):41

    Google Scholar 

  • Streitz N (2019) Beyond ‘smart-only’ cities: redefining the ‘smart-everything’ paradigm. J Ambient Intell Humaniz Comput 10(2):791–812

    Article  Google Scholar 

  • Streitz N, Privat G (2009) Ambient intelligence. Final section: looking to the future. In: Stephanidis C (ed) The universal access handbook. CRC Press, pp. 60.1–60.17

    Google Scholar 

  • Streitz N, Charitos D, Kaptein M, Böhlen M (2019) Grand challenges for ambient intelligence and implications for design contexts and smart societies. J. Ambient Intell. Smart Environ 11(1):87–107

    Article  Google Scholar 

  • Su J, Zhong Y (2022) Artificial intelligence (AI) in early childhood education: curriculum design and future directions. Comput Educ: Artif Intell 3:100072

    Google Scholar 

  • Sulis E, Amantea IA, Aldinucci M, Boella G, Marinello R, Grosso M ... Ambrosini S (2022) An ambient assisted living architecture for hospital at home coupled with a process-oriented perspective. J Ambient Intell Humaniz Comput 21:1–9

    Google Scholar 

  • Sun H, De Florio V, Gui N, Blondia C (2009, April) Promises and challenges of ambient assisted living systems. In: 2009 sixth international conference on information technology: new generations. IEEE, pp 1201–1207

    Google Scholar 

  • Taştan M (2022) A low-cost air quality monitoring system based on internet of things for smart homes. J Ambient Intell Smart Environ Preprint:1–24

    Google Scholar 

  • Tay NC, Connie T, Ong TS, Teoh ABJ, Teh PS (2023) A review of abnormal behavior detection in activities of daily living, vol 11. IEEE Access, p 5069

    Google Scholar 

  • Taylor, A. (2002). Teenage ‘phone-talk’ and its implications for design., Proceedings of NordiCHI 2002 Bridging the gap between field studies and design workshop

    Google Scholar 

  • Thakur N, Han CY (2021) An ambient intelligence-based human behavior monitoring framework for ubiquitous environments. Information 12(2):81

    Article  Google Scholar 

  • Thakur N, Han CY (2022) A simplistic and cost-effective Design for Real-World Development of an ambient assisted living system for fall detection and indoor localization: proof-of-concept. Information 13(8):363

    Article  Google Scholar 

  • Thorndike E (1920) Intelligence and its uses. Harpers Magazine 140:227–235

    Google Scholar 

  • Ungurean OC, Vatavu RD (2022, September) Users with motor impairments’ preferences for smart wearables to access and interact with ambient intelligence applications and services. In: Ambient intelligence–software and applications – 12th international symposium on ambient intelligence. Springer International Publishing, Cham, pp 11–21

    Google Scholar 

  • van der Helm R (2009) The vision phenomenon: towards a theoretical underpinning of visions of the future and the process of envisioning. Futures 41(2):96–104

    Article  Google Scholar 

  • Vatavu RD, Ungurean OC, Bilius LB (2022, October) Interactive public displays and wheelchair users: between direct, personal and indirect, assisted interaction. In: Proceedings of the 35th annual ACM symposium on user interface software and technology, pp 1–17

    Google Scholar 

  • Verhulsdonck G, Weible JL, Helser S, Hajduk N (2023) Smart cities, playable cities, and cybersecurity: a systematic review. Int J Hum-Comput Int 39(2):378–390

    Google Scholar 

  • Vernon P (1933) Some characteristics of the good judge of personality. J Soc Psychol 4:42–57

    Article  Google Scholar 

  • Vourganas I, Stankovic V, Stankovic L (2020) Individualised responsible artificial intelligence for home-based rehabilitation. Sensors 21(1):2

    Article  Google Scholar 

  • Vourganas I, Attar H, Michala AL (2022) Accountable, responsible, transparent artificial intelligence in ambient intelligence systems for healthcare. In: Intelligent healthcare: infrastructure, algorithms and management. Singapore, Springer Nature Singapore, pp 87–111

    Chapter  Google Scholar 

  • Weiser M (1991) The computer for the 21st century. Sci Am 265(3):94–105

    Article  Google Scholar 

  • Weiser M (1993) Some computer science issues in ubiquitous computing. Commun ACM 36(7):75–84

    Article  Google Scholar 

  • Ystgaard KF, De Moor K (2023) Envisioning the future: A multi-disciplinary approach to human-centered intelligent environments. Qual User Exp 8(1):11

    Google Scholar 

  • Zelkha E (1998) The future of information appliances and consumer devices. Palo Alto ventures, Palo Alto. (unpublished document)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris De Ruyter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

De Ruyter, B., Wegener, R., Cassens, J., Aarts, E. (2024). Ambient Intelligence. In: Vanderdonckt, J., Palanque, P., Winckler, M. (eds) Handbook of Human Computer Interaction. Springer, Cham. https://doi.org/10.1007/978-3-319-27648-9_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27648-9_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27648-9

  • Online ISBN: 978-3-319-27648-9

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics