Skip to main content

The Physiology of the Testis

  • Living reference work entry
  • First Online:
Principles of Endocrinology and Hormone Action

Part of the book series: Endocrinology ((ENDOCR))

Summary

The testis is the most important organ for reproductive and sexual function. Male fetal sexual differentiation of the genitalia is driven by Leydig cell-secreted androgens and Sertoli cell (SC)-secreted anti-Müllerian hormone. The hormone insulin-like factor 3 (INSL3) is produced by testicular Leydig cells (LCs) depending on the state of LC differentiation and is stimulated by the long-term trophic effects of luteinizing hormone (see testicular descent). INSL3 is, along with the other major Leydig cell hormone testosterone (Te), essential for testicular descent, which in humans should be completed before birth. The absence of androgen receptor expression in SCs underlies a physiological stage of androgen insensitivity within the male gonad in the fetal and early postnatal periods. From fetal life to adulthood, the testis evolves through maturational phases showing specific morphologic and functional features in its different compartments. The seminiferous cords contain Sertoli and germ cells, surrounded by peritubular cells, and the interstitial tissue contains LCs and connective tissue. During infancy and childhood, LCs regress and Te secretion declines dramatically. SCs remain immature and spermatogenesis is arrested at the premeiotic stage. At puberty, LCs differentiate again, and Te concentration increases and provokes SC maturation and germ cells undergo meiosis, the hallmark of adult spermatogenesis driving to sperm production (see Interstitial compartment). During adulthood androgen receptors became expressed and spermatogenesis occurs, while in aging, despite that sperm cell production remains partially affected, the secretion rate of Te declines depending on the presence of comorbidities and drugs affecting its production by LC (see aging).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amann RP. The cycle of the seminiferous epithelium: a need to revisit? J Androl. 2008;29:469–87.

    Article  PubMed  Google Scholar 

  • Aversa A, Morgentaler A. The practical management of testosterone deficiency in men. Nat Rev Urol. 2015;12:641–50.

    Article  CAS  PubMed  Google Scholar 

  • Aversa A, Francomano D, Lenzi A. Does testosterone supplementation increase PDE5-inhibitor responses in difficult-to-treat erectile dysfunction patients? Expert Opin Pharmacother. 2015;16:625–8.

    Article  CAS  PubMed  Google Scholar 

  • Basciani S, Mariani S, Spera G, Gnessi L. Role of platelet-derived growth factors in the testis. Endocr Rev. 2010;31:916–39.

    Article  CAS  PubMed  Google Scholar 

  • Boepple PA, Hayes FJ, Dwyer AA, et al. Relative roles of inhibin B and sex steroids in the negative feedback regulation of follicle-stimulating hormone in men across the full spectrum of seminiferous epithelium function. J Clin Endocrinol Metab. 2008;93:1809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger LL, Haisenleder DJ, Dalkin AC, Marshall JC. Regulation of gonadotropin subunit gene transcription. J Mol Endocrinol. 2004;33:559–84.

    Article  CAS  PubMed  Google Scholar 

  • Camacho EM, Huhtaniemi IT, O’Neill TW, et al. Age-associated changes in hypothalamic–pituitary–testicular function in middle-aged and older men are modified by weight change and lifestyle factors: longitudinal results from the European Male Ageing Study. Eur J Endocrinol. 2013;168:445–55.

    Article  CAS  PubMed  Google Scholar 

  • Cheng CK, Leung PC. Molecular biology of gonadotropin- releasing hormone (GnRH)-I, GnRH-II, and their receptors in humans. Endocr Rev. 2005;26:283–306.

    Article  CAS  PubMed  Google Scholar 

  • Chou SH. 20 years of leptin: role of leptin in human reproductive disorders. J Endocrinol. 2014;223:T49–62.

    Article  CAS  PubMed  Google Scholar 

  • Claassen H, Monig H, Sel S, et al. Androgen receptors and gender-specific distribution of alkaline phosphatase in human thyroid cartilage. Histochem Cell Biol. 2006;126:381–8.

    Article  CAS  PubMed  Google Scholar 

  • Coviello AD, Matsumoto AM, Bremner WJ, et al. Low-dose human chorionic gonadotropin maintains intratesticular testosterone in normal men with testosterone-induced gonadotropin suppression. J Clin Endocrinol Metab. 2005;90:2595–602.

    Article  CAS  PubMed  Google Scholar 

  • d’Anglemont de Tassigny X, Fagg LA, et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci U S A. 2007;104:10714–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Roux N, Genin E, Carel JC, et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A. 2003;100:10972–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Felici F, Ilenia B, Sgrò P, et al. Acute severe male hypotestosteronemia affects central motor command in humans. J Electrom Kines. 2016. doi:10.1016/j.jelekin.2015.12.004.

    Google Scholar 

  • Ferlin A, Simonato M, Bartoloni L. The INSL3-LGR8/ GREAT ligand-receptor pair in human cryptorchidism. J Clin Endocrinol Metab. 2003;88:4273–9.

    Article  CAS  PubMed  Google Scholar 

  • Ferlin A, Garolla A, Rigon F, et al. Changes in serum Insulin-like factor 3 (INSL3) during normal male puberty. J Clin Endocrinol Metab. 2006;91:3426–31.

    Article  CAS  PubMed  Google Scholar 

  • Ferris HA, Shupnik MA. Mechanisms for pulsatile regulation of the gonadotropin subunit genes by GNRH1. Biol Reprod. 2006;74:993–8.

    Article  CAS  PubMed  Google Scholar 

  • Foresta C, Bettella A, Vinanzi C, et al. Insulin like factor 3: a novel circulating hormone of testis origin in humans. J Clin Endocrinol Metab. 2004;89:5952–8.

    Article  CAS  PubMed  Google Scholar 

  • Francomano D, Greco EA, Lenzi A, Aversa A. CAG repeat testing of androgen receptor polymorphism: is this necessary for the best clinical management of hypogonadism? J Sex Med. 2013;10:2373–81.

    Article  CAS  PubMed  Google Scholar 

  • Ge R, Hardy MP. Regulation of Leydig cells during pubertal development. In: Payne AH, Hardy MP, editors. The Leydig cell in health and disease. Totowa: Humana Press; 2007. p. 55–70.

    Chapter  Google Scholar 

  • Grigorova M, Punab M, Ausmees K, Laan M. FSHB promoter polymorphism within evolutionary conserved element is associated with serum FSH level in men. Hum Reprod. 2008;23:2160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes FJ, Crowley Jr WF. Gonadotropin pulsations across development. Horm Res. 1998;49:163–8.

    CAS  PubMed  Google Scholar 

  • Huhtaniemi I, Jiang M, Nilsson C, Petterson K. Mutations and polymorphisms in gonadotropin genes. Mol Cell Endocrinol. 1999;151:89–94.

    Article  CAS  PubMed  Google Scholar 

  • Imperato-McGinley J, Zhu YS. Androgens and male physiology the syndrome of 5α-reductase-2 deficiency. Mol Cell Endocrinol. 2002;198(1–2):51–9.

    Article  CAS  PubMed  Google Scholar 

  • Isidori AM, Balercia G, Calogero AE. Outcomes of androgen replacement therapy in adult male hypogonadism: recommendations from the Italian society of endocrinology. J Endocrinol Invest. 2015;38:103–12.

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Yokoyama A, Fujiki R. Nuclear receptor coregulators merge transcriptional coregulation with epigenetic regulation. Trends Biochem Sci. 2011;36:272–81.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman JM, Vermeulen A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev. 2005;26:833–76.

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Hu Y, Cadman S, Bouloux P. Diversity in fibroblast growth factor receptor 1 regulation: learning from the investigation of kallmann syndrome. J Neuroendocrinol. 2008;20:141–63.

    Article  CAS  PubMed  Google Scholar 

  • Kumagai J, Hsu SY, Matsumi H, et al. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem. 2002;277:31283–6.

    Article  CAS  PubMed  Google Scholar 

  • Laron Z, Klinger B. Effect of insulin-like growth factor on serum androgens and testicular and penile size in males with Laron syndrome (primary growth hormone resistance). Eur J Endocrinol. 1998;138:176–80.

    Article  CAS  PubMed  Google Scholar 

  • Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levalle O, Zylbersztein C, Aszpis S, et al. Recombinant human follicle-stimulating hormone administration increases testosterone production in men, possibly by a sertoli cell-secreted non steroid factor. J Clin Endocrinol Metab. 1998;83:3973–6.

    Article  CAS  PubMed  Google Scholar 

  • Lindstedt G, Nystrom E, Matthews C, et al. Follitropin (FSH) deficiency in an infertile male due to FSHβ gene mutation. Clin Chem Lab Med. 1998;36:663–5.

    Article  CAS  PubMed  Google Scholar 

  • Lofrano-Porto A, Casulari LA, Nascimento PP, et al. Effects of follicle-stimulating hormone and human chorionic gonadotropin on gonadal steroidogenesis in two sibling with a follicle-stimulating hormone β-subunit mutation. Fertil Steril. 2008;90:1169–74.

    Article  PubMed  Google Scholar 

  • Lopez FJ, Merchenthaler IJ, Moretto M, Negro-Vilar A. Modulating mechanisms of neuroendocrine cell activity: the LHRH pulse generator. Cell Mol Neurobiol. 1998;18:125–46.

    Article  CAS  PubMed  Google Scholar 

  • Matthiesson KL, Stanton PG, O’Donnell L, et al. Effects of testosterone and levonorgestrel combined with a 5α-reductase inhibitor or gonadotropin-releasing hormone antagonist on spermatogenesis and intratesticular steroid levels in normal men. J Clin Endocrinol Metab. 2005;90:5647–55.

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio S, Francomano D, Bruzziches R, et al. Trunk fat negatively influences skeletal and testicular functions in obese men: clinical implications for the aging male. Int J Endocrinol. 2013. doi:10.1155/2013/182753.Epub2013.

    PubMed  PubMed Central  Google Scholar 

  • Millar RP, Pawson AJ, Morgan K, et al. Diversity of actions of GnRHs mediated by ligand-induced selective signaling. Front Neuroendocrinol. 2008;29:17–35.

    Article  CAS  PubMed  Google Scholar 

  • Moyle WR, Campbell RK. Gonadotropins. In: DeGroot JL, Besser M, Burger HG, Jameson LJ, Loriaux DL, Marshall JC, Odell WD, Potts jr JT, Rubenstein AH, editors. Endocrinology. Philadelphia/London: Saunders; 1995. p. 230–41.

    Google Scholar 

  • Oury F, Sumara G, Sumara O, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144:796–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penning TM, Burczynski ME, Jez JM, et al. Human 3alpha- hydroxysteroid dehydrogenase isoforms of the aldoketo reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J. 2000;351:67–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piersma D, Verhoef-Post M, Berns EM, Themmen AP. LH receptor gene mutations and polymorphisms: an overview. Mol Cell Endocrinol. 2007;260–262:282–A286.

    Article  PubMed  Google Scholar 

  • Popa SM, Clifton DK, Steiner RA. The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction. Annu Rev Physiol. 2008a;70:213–38.

    Article  CAS  PubMed  Google Scholar 

  • Popa SM, Clifton DK, Steiner RA. The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction. Ann Rev Physiol. 2008b;70:213–38.

    Article  CAS  Google Scholar 

  • Prince FP. The human Leydig cell: functional morphology and developmental history. In: Hardy MP, Payne AH, editors. The Leydig cell in health and disease. Totowa: Humana Press; 2007. p. 71–90.

    Chapter  Google Scholar 

  • Randall VA, Jenner TJ, Hibberts NA, et al. Stem cell factor/c-Kit signalling in normal and androgenetic alopecia hair follicles. J Endocrinol. 2008;197:11–23.

    Article  CAS  PubMed  Google Scholar 

  • Ransome M, Boon WC. Testosterone-induced adult neurosphere growth is mediated by sexually-dimorphic aromatase expression. Front Cell Neurosci. 2015;9:253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolf C, Nieschlag E “Senescence”. Da “Andrology – Male reproductive health and dysfunction” Cap. 1997;21:397–407.

    Google Scholar 

  • Selva DM, Bassas L, Munell F, et al. Human sperm sex hormone-binding globulin isoform: characterization and measurement by time-resolved fluorescence immunoassay. J Clin Endocrinol Metab. 2005;90:6275–82.

    Article  CAS  PubMed  Google Scholar 

  • Seminara SB, Messager S, Chatzidaki EE, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349:1614–27.

    Article  CAS  PubMed  Google Scholar 

  • Simoni M, Casarini L. Mechanisms in endocrinology: genetics of FSH action: a 2014-and-beyond view. Eur J Endocrinol. 2014;170(3):R91–107.

    Article  CAS  PubMed  Google Scholar 

  • Sriraman V, Anbalagan M, Rao AJ. Hormonal regulation of Leydig cell proliferation and differentiation in rodent testis: a dynamic interplay between gonadotrophins and testicular factors. Reprod BioMed Online. 2005;11:507–18.

    Article  CAS  PubMed  Google Scholar 

  • Takaimya K, Yamamoto A, Furukawa K, et al. Complex gangliosides are essential in spermatogenesis of mice: possible roles in the transport of testosterone. Proc Natl Acad Sci U S A. 1998;95:12147–52.

    Article  Google Scholar 

  • Themmen AP, Martens JW, Brunner HG. Activating and inactivating mutations in LH receptor. Mol Cell Endocrinol. 1998;145:137–42.

    Article  CAS  PubMed  Google Scholar 

  • Tirabassi G, Cignarelli A, Perrini S, et al. Influence of CAG repeat polymorphism on the targets of testosterone action. Int J Endocrinol. 2015;2015:298107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobet SA, Schwarting GA. Recent progress in gonadotropin-releasing hormone neuronal migration. Endocrinology. 2006;147:1159–65.

    Article  CAS  PubMed  Google Scholar 

  • Travison TG, Araujo AB, Kupelian V, et al. The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men. J Clin Endocrinol Metab. 2007;92:549–55.

    Article  CAS  PubMed  Google Scholar 

  • Valimaki VV, Alfthan H, Ivaska KK, et al. Serum estradiol, testosterone, and sex hormone-binding globulin as regulators of peak bone mass and bone turnover rate in young Finnish men. J Clin Endocrinol Metab. 2004;89:3785–9.

    Article  PubMed  Google Scholar 

  • Vandenput L, Mellstrom D, Lorentzon M, et al. Androgens and glucuronidated androgen metabolites are associated with metabolic risk factors in men. J Clin Endocrinol Metab. 2007;92:4130–7.

    Article  CAS  PubMed  Google Scholar 

  • Weinbauer GF, Wessels J. Paracrine control of spermatogenesis. Andrologia. 1999;31:249–62.

    Article  CAS  PubMed  Google Scholar 

  • Weinbauer GF, Niehaus M, Nieschlag E. The role of testosterone in spermatogenesis. Testosterone: action, deficiency, substitution. Cambridge: Cambridge University Press; 2004. p. 173–206.

    Book  Google Scholar 

  • Xu Q, Lin HY, Yeh SD, Yu IC, et al. Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrine. 2007;32:96–106.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yeh S, Chen YT, et al. Oligozoospermia with normal fertility in male mice lacking the androgen receptor in testis peritubular myoid cells. Proc Natl Acad Sci U S A. 2006;103:17718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitzmann M. Testosterone and the brain. Aging Male. 2006;9:195–9.

    Article  CAS  PubMed  Google Scholar 

  • Zuccarello D, Ferlin A, Vinanzi C, et al. Detailed functional studies on androgen receptor mild mutations demonstrate their association with male infertility. Clin Endocrinol (Oxf). 2008;68:580–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Aversa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Ilacqua, A., Francomano, D., Aversa, A. (2016). The Physiology of the Testis. In: Belfiore, A., LeRoith, D. (eds) Principles of Endocrinology and Hormone Action. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-27318-1_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27318-1_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-27318-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics