Skip to main content

Guide to Programs for Nonrelativistic Quantum Chemistry Calculations

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

This chapter reviews most of the widely used nonrelativistic quantum chemistry program packages. Considering that information about availability and capabilities of the free quantum chemistry programs is more limited than that of the commercial ones, the authors concentrated on the free programs. More specifically, the reviewed programs are free for the academic community. Features of these programs are described in detail. The capabilities of each free program can generally be categorized into five fields: independent electron model; electron correlation treatment; excited state calculation; nuclear dynamics including gradient and hessian; and parallel computation. Examples of input files for the Møller–Plesset calculation of formaldehyde are presented for most of the free programs to illustrate how to create the input files. The main contributors of each free program and their institutions are also introduced, with a brief history of program development if available. All the key references of the cited algorithms and the hyperlinks of the home page of each program (both free and commercial) are given in this review for the interested readers. As the most important information of every cited free program’s documentation has been extracted here, it is appropriate to consider this chapter to be the manual of manuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original 13,370 lines of Gaussian 70 code were released to general public via the now defunct Quantum Chemistry Program Exchange (QCPE). Historic information about QCPE may be found on http://www.ccl.net/ccl/qcpe/QCPE_removed/. QCPE offered as the first ab initio program Polyatom (Version 1 with 3,275 lines of code) was made available by Csizmadia et al. in 1964. It is worth mentioning in passing that the fees that QCPE charged for the programs were very modest by today’s standards: $175 for codes greater than 10,000 lines plus $35 for media and handling. The programs grew as new capabilities were added: in 1974 Polyatom (Version II for IBM 360) grew to 20,000 lines, while the 1980 release of Gaussian (IBM Version II) contained about 60,000 lines of code. The current status of QCPE was explained in a brief note saved in Computational Chemistry List http://ccl.net/chemistry/resources/messages/2009/06/04.001-dir/index.html.

Bibliography

  • Adamovic, I., Freitag, M. A., & Gordon, M. S. (2003). Density functional theory based effective fragment potential method. The Journal of Chemical Physics, 118, 6725–6732.

    Article  CAS  Google Scholar 

  • Almlöf, J. (1987). General contraction of Gaussian basis sets. I. Atomic natural orbitals for first- and second-row atoms. The Journal of Chemical Physics, 86, 4070–4077.

    Article  Google Scholar 

  • Baldridge, K., & Klamt, A. (1997). First principles implementation of solvent effects without outlying charge error. The Journal of Chemical Physics, 106, 6622–6633.

    Article  Google Scholar 

  • Bartlett, R. J. (2005). How and why coupled-cluster theory became the pre-eminent method in an ab initio quantum chemistry. In C. E. Dykstra, G. Frenking, K. S. Kim, & G. E. Scuseria (Eds.), Theory and applications of computational chemistry: The first forty years (pp. 1191–1221). Amsterdam/Boston: Elsevier.

    Chapter  Google Scholar 

  • Bartlett, R. J., & Musiał, M. (2007). Coupled-cluster theory in quantum chemistry. Reviews of Modern Physics, 79, 291.

    Article  CAS  Google Scholar 

  • Bobrowicz, F. W., & Schaefer, H. F., III. (1977). The self-consistent field equations for generalized valence bond and open-shell Hartree-Fock wave functions. In H. F. Schaefer III (Ed.), Methods of electronic structure theory (modern theoretical chemistry) (Vol. 3, pp. 79–127). New York/London: Plenum.

    Chapter  Google Scholar 

  • Brooks, B. R., & Schaefer, H. F., III. (1979). The graphical unitary group approach to the electron correlation problem. Methods and preliminary applications. The Journal of Chemical Physics, 70, 5092–5106.

    Article  CAS  Google Scholar 

  • Cammi, R., & Tomasi, J. (1995). Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges. Journal of Computational Chemistry, 16, 1449–1458.

    Article  CAS  Google Scholar 

  • Cao, X., & Dolg, M. (2006). Relativistic energy-consistent ab initio pseudopotentials as tools for quantum chemical investigations of actinide systems. Coordination Chemistry Reviews, 250, 900–910.

    Article  CAS  Google Scholar 

  • Cederbaum, L. S., & Domcke, W. (1977). Theoretical aspects of ionization potentials and photoelectron spectroscopy: A Green’s function approach. Advances in Chemical Physics, 36, 205–344.

    CAS  Google Scholar 

  • Chaban, G. M., Jung, J. O., & Gerber, R. B. (1999). Ab initio calculation of anharmonic vibrational states of polyatomic systems: Electronic structure combined with vibrational self-consistent field. The Journal of Chemical Physics, 111, 1823–1829.

    Article  CAS  Google Scholar 

  • Chipman, D. M. (1997). Charge penetration in dielectric models of solvation. The Journal of Chemical Physics, 106, 10194–10206.

    Article  CAS  Google Scholar 

  • Chipman, D. M. (2000). Reaction field treatment of charge penetration. The Journal of Chemical Physics, 112, 5558–5565.

    Article  CAS  Google Scholar 

  • Chipman, D. M. (2002). Comparison of solvent reaction field representations. Theoretical Chemistry Accounts, 107, 80–89.

    Article  CAS  Google Scholar 

  • Crawford, T. D., Sherrill, C. D., Valeev, E. F., Fermann, J. T., King, R. A., Leininger, M. L., Brown, S. T., Janssen, C. L., Seidl, E. T., Kenny, J. P., & Allen, W. D. (2007). PSI3: An open-source ab initio electronic structure package. Journal of Computational Chemistry, 28, 1610–1616.

    Article  CAS  Google Scholar 

  • Csizmadia, I. G., Harrison, M. C., Moskowitz, J. W., Seung, S., Sutcliffe, B. T., & Barrett, M. P. (1964). POLYATOM. Quantum Chemistry Program Exchange, 11, 47.

    Google Scholar 

  • Cundari, T. R., & Stevens, W. J. (1993). Effective core potential methods for the lanthanides. The Journal of Chemical Physics, 98, 5555–5565.

    Article  CAS  Google Scholar 

  • Day, P. N., Jensen, J. H., Gordon, M. S., Webb, S. P., Stevens, W. J., Krauss, M., Garmer, D., Basch, H., & Cohen, D. (1996). An effective fragment method for modeling solvent effects in quantum mechanical calculations. The Journal of Chemical Physics, 105, 1968–1986.

    Article  CAS  Google Scholar 

  • de Vries, A. H., van Duijnen, P. T., Juffer, A. H., Rullmann, J. A. C., Dijkman, J. P., Merenga, H., & Thole, B. T. (1995). Implementation of reaction field methods in quantum chemistry computer codes. Journal of Computational Chemistry, 16, 37–55.

    Article  Google Scholar 

  • Dewar, M. J. S., & Thiel, W. (1977). Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, 99, 4899–4906.

    Article  CAS  Google Scholar 

  • Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., & Stewart, J. J. P. (1985). AM1: A new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107, 3902–3909.

    Article  CAS  Google Scholar 

  • Dewar, M. J. S., Jie, C., & Yu, J. (1993). SAM1; the first of a new series of general purpose quantum mechanical molecular models. Tetrahedron, 49, 5003–5038.

    Article  CAS  Google Scholar 

  • Dolg, M. (2000). Effective core potentials. In J. Grotendorst (Ed.), Modern methods and algorithms of quantum chemistry (Vol. 1, pp. 479–508). Jülich: John von Neumann Institute for Computing.

    Google Scholar 

  • Douglas, M., & Kroll, N. M. (1974). Quantum electrodynamical corrections to the fine structure of helium. Annals of Physics, 82, 89–155.

    Article  CAS  Google Scholar 

  • Dreuw, A., & Head-Gordon, M. (2005). Single-reference ab initio methods for the calculation of excited states of large molecules. Chemical Reviews, 105, 4009–4037.

    Article  CAS  Google Scholar 

  • Duijnen, P. T. V., & de Vries, A. H. (1996). Direct reaction field force field: A consistent way to connect and combine quantum-chemical and classical descriptions of molecules. International Journal of Quantum Chemistry, 60, 1111–1132.

    Article  Google Scholar 

  • Dunning, T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90, 1007–1023.

    Article  CAS  Google Scholar 

  • Dunning, T. H., & Hay, P. J. (1977). Gaussian basis sets for molecular calculations. In H. F. Schaefer III (Ed.), Methods of electronic structure theory (modern theoretical chemistry) (Vol. 3, pp. 1–27). New York/London: Plenum.

    Google Scholar 

  • Dupuis, M., Spangler, D., & Wendoloski, J. (1980). NRCC software catalog (Vol. 1, Program No. QG01 GAMESS Tech. rep.) Berkeley: National Resource for Computations in Chemistry, University of California.

    Google Scholar 

  • Dyall, K. G. (2002). A systematic sequence of relativistic approximations. Journal of Computational Chemistry, 23, 786–793.

    Article  CAS  Google Scholar 

  • Dyall, K. G., & van Lenthe, E. (1999). Relativistic regular approximations revisited: An infinite-order relativistic approximation. The Journal of Chemical Physics, 111, 1366–1372.

    Article  CAS  Google Scholar 

  • Elliott, P., Furche, F., & Burke, K. (2009). Excited states from time-dependent density functional theory. Reviews in Computational Chemistry, 26, 91–166.

    CAS  Google Scholar 

  • Faas, S., Snijders, J. G., van Lenthe, J. H., van Lenthe, E., & Baerends, E. J. (1995). The ZORA formalism applied to the Dirac-Fock equation. Chemical Physics Letters, 246, 632–640.

    Article  CAS  Google Scholar 

  • Fedorov, D. G., & Kitaura, K. (2007). Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. The Journal of Physical Chemistry. A, 111, 6904–6914.

    Article  CAS  Google Scholar 

  • Fedorov, D. G., & Kitaura, K. (2009). The fragment molecular orbital method: Practical applications to large molecular systems. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Fock, V. A. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperpro- blems. Zeitschrift für Physik, 61, 126–148.

    Article  Google Scholar 

  • Foresman, J. B., Head-Gordon, M., Pople, J. A., & Frisch, M. J. (1992). Toward a systematic molecular orbital theory for excited states. The Journal of Physical Chemistry, 96, 135–149.

    Article  CAS  Google Scholar 

  • Fuchs, C., Bonačić-Koutecký, V., & Koutecký, J. (1993). Compact formulation of multiconfigurational response theory. Applications to small alkali metal clusters. The Journal of Chemical Physics, 98, 3121–3140.

    Article  Google Scholar 

  • Gordon, M. S., & Schmidt, M. W. (2005). Advances in electronic structure theory: GAMESS a decade later. In C. E. Dykstra, G. Frenking, K. S. Kim, & G. E. Scuseria (Eds.), Theory and applications of computational chemistry: The first forty years (pp. 1167–1189). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Gordon, M. S., Slipchenko, L. V., Li, H., & Jensen, J. H. (2007). The effective fragment potential: A general method for predicting intermolecular interactions. In D. Spellmeyer & R. Wheeler (Eds.), Annual reports in computational chemistry (Vol. 3, pp. 177–193). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Guest, M. F., Bush, I. J., van Dam, H. J. J., Sherwood, P., Thomas, J. M. H., van Lenthe, J. H., Havenith, R. W. A., & Kendrick, J. (2005). The GAMESS-UK electronic structure package: Algorithms, developments and applications. Molecular Physics, 103, 719–747.

    Article  CAS  Google Scholar 

  • Hall, G. G., & Lennard-Jones, J. (1951). The molecular orbital theory of chemical valency. III. Properties of molecular orbitals. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 202, 155–165.

    Article  Google Scholar 

  • Hartree, D. R. (1928). The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 89–110.

    Article  CAS  Google Scholar 

  • Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299–310.

    Article  CAS  Google Scholar 

  • Hess, B. A. (1986). Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Physical Review A, 33, 3742–3748.

    Article  CAS  Google Scholar 

  • Hess, B. A. (1989). Revision of the Douglas-Kroll transformation. Physical Review A, 39, 6016–6017.

    Article  Google Scholar 

  • Hsu, H., Davidson, E. R., & Pitzer, R. M. (1976). An SCF method for hole states. The Journal of Chemical Physics, 65, 609–613.

    Article  CAS  Google Scholar 

  • Hurley, M. M., Pacios, L. F., Christiansen, P. A., Ross, R. B., & Ermler, W. C. (1986). Ab initio relativistic effective core potentials with spin-orbit operators. II. K through Kr. The Journal of Chemical Physics, 84, 6840–6853.

    Article  CAS  Google Scholar 

  • Huzinaga, S., Seijo, L., Barandiarán, Z., & Klobukowski, M. (1987). The ab initio model potential method. Main group elements. The Journal of Chemical Physics, 86, 2132–2145.

    Article  CAS  Google Scholar 

  • Ivanic, J. (2003a). Direct configuration interaction and multiconfigurational self-consistent-field method for multiple active spaces with variable occupations. I. Method. The Journal of Chemical Physics, 119, 9364–9376.

    Article  CAS  Google Scholar 

  • Ivanic, J. (2003b). Direct configuration interaction and multiconfigurational self-consistent-field method for multiple active spaces with variable occupations. II. Application to oxoMn(salen) and N2O4. The Journal of Chemical Physics, 119, 9377–9385.

    Article  CAS  Google Scholar 

  • Ivanic, J., & Ruedenberg, K. (2001). Identification of deadwood in configuration spaces through general direct configuration interaction. Theoretical Chemistry Accounts, 106, 339–351.

    Article  CAS  Google Scholar 

  • Jensen, J. H., Day, P. N., Gordon, M. S., Basch, H., Cohen, D., Garmer, D. R., Krauss, M., & Stevens, W. J. (1984). An effective fragment method for modeling intermolecular hydrogen bonding-effects on quantum mechanical calculations. In D. A. Smith (Ed.), Modeling the hydrogen bond (ACS symposium, Vol. 569, pp. 139–151). New York: ACS.

    Chapter  Google Scholar 

  • Kahn, L. R., Baybutt, P., & Truhlar, D. G. (1976). Ab initio effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons. The Journal of Chemical Physics, 65, 3826–3853.

    Article  CAS  Google Scholar 

  • Karelson, M. M., Katritzky, A. R., & Zerner, M. C. (1986). Reaction field effects on the electron distribution and chemical reactivity of molecules. International Journal of Quantum Chemistry, 30, 521–527.

    Article  Google Scholar 

  • Karelson, M., Tamm, T., & Zerner, M. C. (1993). Multicavity reaction field method for the solvent effect description in flexible molecular systems. The Journal of Physical Chemistry, 97, 11901–11907.

    Article  CAS  Google Scholar 

  • Kendall, R. A., Aprà, E., Bernholdt, D. E., Bylaska, E. J., Dupuis, M., Fann, G. I., Harrison, R. J., Ju, J., Nichols, J. A., Nieplocha, J., Straatsma, T. P., Windus, T. L., & Wong, A. T. (2000). High performance computational chemistry: An overview of NWChem a distributed parallel application. Computer Physics Communications, 128, 260–283.

    Article  CAS  Google Scholar 

  • Kirkwood, J. G. (1934). Theory of solutions of molecules containing widely separated charges with special application to zwitterions. The Journal of Chemical Physics, 2, 351–361.

    Article  CAS  Google Scholar 

  • Klamt, A. (1995). Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. The Journal of Physical Chemistry, 99, 2224–2235.

    Article  CAS  Google Scholar 

  • Klamt, A., & Schüürmann, G. (1993). COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions, 2, 799–805.

    Article  Google Scholar 

  • Klobukowski, M., Huzinaga, S., & Sakai, Y. (1999). Model core potentials: Theory and applications. In J. Leszczynski (Ed.), Computational chemistry: Reviews of current trends (Vol. 3, pp. 49–74). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Knowles, P. J., Andrews, J. S., Amos, R. D., Handy, N. C., & Pople, J. A. (1980). Restricted Møller-Plesset theory for open-shell molecules. Chemical Physics Letters, 186, 130–136.

    Article  Google Scholar 

  • Kowalski, K., & Piecuch, P. (2004). New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states. The Journal of Chemical Physics, 120, 1715–1738.

    Article  CAS  Google Scholar 

  • LaJohn, L. A., Christiansen, P. A., Ross, R. B., Atashroo, T., & Ermler, W. C. (1987). Ab initio relativistic effective core potentials with spin-orbit operators. III. Rb through Xe. The Journal of Chemical Physics, 87, 2812–2824.

    Article  CAS  Google Scholar 

  • Lauderdale, W. J., Stanton, J. F., Gauss, J., Watts, J. D., & Bartlett, R. J. (1991). Many-body perturbation theory with a restricted open-shell Hartree-Fock reference. Chemical Physics Letters, 187, 21–28.

    Article  CAS  Google Scholar 

  • Lee, T. J., & Jayatilaka, D. (1993). An open-shell restricted Hartree-Fock perturbation theory based on symmetric spin orbitals. Chemical Physics Letters, 201, 1–10.

    Article  CAS  Google Scholar 

  • Lee, T. J., Rendell, A. P., Dyall, K. G., & Jayatilaka, D. (1994). Open-shell restricted Hartree-Fock perturbation theory: Some considerations and comparisons. The Journal of Chemical Physics, 100, 7400–7409.

    Article  CAS  Google Scholar 

  • Lischka, H., Shepard, R., Shavitt, I., Pitzer, R. M., Dallos, M., Müller, Th., Szalay, P. G., Brown, F. B., Ahlrichs, R., Böhm, H. J., Chang, A., Comeau, D. C., Gdanitz, R., Dachsel, H., Ehrhardt, C., Ernzerhof, M., Höchtl, P., Irle, S., Kedziora, G., Kovar, T., Parasuk, V., Pepper, M. J. M., Scharf, P., Schiffer, H., Schindler, M., Schüler, M., Seth, M., Stahlberg, E. A., Zhao, J.-G., Yabushita, S., Zhang, Z., Barbatti, M., Matsika, S., Schuurmann, M., Yarkony, D. R., Brozell, S. R., Beck, E. V., & Blaudeau, J.-P. (2006). COLUMBUS, an ab initio electronic structure program, release 5.9.1.

    Google Scholar 

  • Lotrich, V., Flocke, N., Ponton, M., Yau, A. D., Perera, A., Deumens, E., & Bartlett, R. J. (2008). Parallel implementation of electronic structure energy, gradient, and hessian calculations. The Journal of Chemical Physics, 128, 194104/1–15.

    Article  CAS  Google Scholar 

  • McWeeny, R., & Diercksen, G. H. F. (1968). Self-consistent perturbation theory. II. Extension to open shells. The Journal of Chemical Physics, 49, 4852–4856.

    Article  CAS  Google Scholar 

  • Miertuš, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55, 117–129.

    Article  Google Scholar 

  • Møller, Ch., & Plesset, M. S. (1934). Note on an approximation treatment for many-electron systems. Physical Review, 46, 618–622.

    Google Scholar 

  • Nakajima, T., & Hirao, K. (1999). A new relativistic theory: A relativistic scheme by eliminating small components (RESC). Chemical Physics Letters, 302, 383–391.

    Article  CAS  Google Scholar 

  • Nakano, H. (1993a). MCSCF reference quasidegenerate perturbation theory with Epstein-Nesbet partitioning. The Journal of Chemical Physics, 99, 7983–7992.

    Article  CAS  Google Scholar 

  • Nakano, H. (1993b). Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. Chemical Physics Letters, 207, 372–378.

    Article  CAS  Google Scholar 

  • Nielsen, E. S., Jørgensen, P., & Oddershede, J. (1980). Transition moments and dynamic polarizabilities in a second order polarization propagator approach. The Journal of Chemical Physics, 73, 6238–6246.

    Article  CAS  Google Scholar 

  • Olsen, J., Yeager, D. L., & Jørgensen, P. (1983). Optimization and characterization of a multiconfigurational self-consistent field (MCSCF) state. Advances in Chemical Physics, 54,1–176.

    CAS  Google Scholar 

  • Pacios, L. F., & Christiansen, P. A. (1985). Ab initio relativistic effective potentials with spin-orbit operators. I. Li through Ar. The Journal of Chemical Physics, 82, 2664–2671.

    Article  Google Scholar 

  • Paldus, J. (2005). The beginnings of coupled-cluster theory: An eyewitness account. In C. E. Dykstra, G. Frenking, K. S. Kim, & G. E. Scuseria (Eds.), Theory and applications of computational chemistry: The first forty years (pp. 115–147). Amsterdam:Elsevier.

    Chapter  Google Scholar 

  • Peterson, K. A. (2003). Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements. The Journal of Chemical Physics, 119, 11099–11112.

    Article  CAS  Google Scholar 

  • Peterson, K. A., Figgen, D., Goll, E., Stoll, H., & Dolg, M. (2003). Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. The Journal of Chemical Physics, 119, 11113–11123.

    Article  CAS  Google Scholar 

  • Piecuch, P., & Włoch, M. (2005). Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian. The Journal of Chemical Physics, 123, 224105/1–10.

    Article  CAS  Google Scholar 

  • Piecuch, P., Kucharski, S. A., Kowalski, K., & Musiał, M. (2002). Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches. Computer Physics Communications, 149, 7196.

    Article  Google Scholar 

  • Pople, J. A., & Nesbet, R. K. (1954). Self-consistent orbitals for radicals. The Journal of Chemical Physics, 22, 571–572.

    Article  CAS  Google Scholar 

  • Pople, J. A., Binkley, J. S., & Seeger, R. (1976). Theoretical models incorporating electron correlation. International Journal of Quantum Chemistry, S10, 1–19.

    Google Scholar 

  • Raffenetti, R. C. (1973). General contraction of Gaussian atomic orbitals: Core, valence, polarization, and diffuse basis sets; Molecular integral evaluation. The Journal of Chemical Physics, 58, 4452–4458.

    Article  CAS  Google Scholar 

  • Read, A. E., & Weinhold, F. (1983). Natural bond orbital analysis of near-Hartree-Fock water dimer. The Journal of Chemical Physics, 78, 4066–4073.

    Article  Google Scholar 

  • Read, A. E., Weinstock, R. B., & Weinhold, F. (1985). Natural population analysis. The Journal of Chemical Physics, 83, 735–746.

    Article  Google Scholar 

  • Ridley, J. E., & Zerner, M. C. (1973). Intermediate neglect of differential overlap techniques for spectroscopy: Pyrrole and the azines. Theoretical Chemistry Accounts: Theory, Computation, and Modeling, 32, 111–134.

    Article  CAS  Google Scholar 

  • Roos, B. O. (1983). The multiconfiguration SCF method. In G. H. F. Diercksen & S. Wilson (Eds.), Methods in computational molecular physics (pp. 161–187). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Roos, B. O. (1987). The CASSCF method and its application in electronic structure calculations. Advances in Chemical Physics, 69, 339–445.

    Google Scholar 

  • Roos, B. O. (1994). The multiconfiguration SCF theory. In B. O. Roos (Ed.), Lecture notes in quantum chemistry (Vol. 58, pp. 177–254). Berlin: Springer.

    Chapter  Google Scholar 

  • Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23, 69–89.

    Article  CAS  Google Scholar 

  • Ross, R. B., Powers, J. M., Atashroo, T., Ermler, W. C., LaJohn, L. A., & Christiansen, P. A. (1990). Ab initio relativistic effective core potentials with spin-orbit operators. IV. Cs through Rn. The Journal of Chemical Physics, 93, 6654–6670.

    Article  CAS  Google Scholar 

  • Roy, L. E., Hay, P. J., & Martin, R. L. (2008). Revised basis sets for the LANL effective core potentials. Journal of Chemical Theory and Computation, 4, 1029–1031.

    Article  CAS  Google Scholar 

  • Ruedenberg, K., Schmidt, M. W., Gilbert, M. M., & Elbert, S. T. (1982a). Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model. Chemical Physics, 71, 41–49.

    Article  CAS  Google Scholar 

  • Ruedenberg, K., Schmidt, M. W., Gilbert, M. M., & Elbert, S. T. (1982b). Are atoms intrinsic to molecular electronic wavefunctions? II. Analysis of FORS orbitals. Chemical Physics, 71, 51–64.

    Article  CAS  Google Scholar 

  • Ruedenberg, K., Schmidt, M. W., Gilbert, M. M., & Elbert, S. T. (1982c). Are atoms intrinsic to molecular electronic wavefunctions? III. Analysis of FORS configurations. Chemical Physics, 71, 65–78.

    Article  CAS  Google Scholar 

  • Schirmer, J., & Cederbaum, L. S. (1978). The two-particle-hole Tamm-Dancoff approximation (2ph-TDA) equations for closed-shell atoms and molecules. Journal of Physics B: Atomic and Molecular Physics, 11, 1889–1900.

    Article  CAS  Google Scholar 

  • Schmidt, M. W., & Gordon, M. S. (1998). The construction and interpretation of MCSCF wavefunctions. Annual Review of Physical Chemistry, 49, 233–266.

    Article  CAS  Google Scholar 

  • Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., & Montgomery, J. J. A. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347–1363.

    Article  CAS  Google Scholar 

  • Shavitt, I., & Bartlett, R. J. (2009). Many-body methods in chemistry and physics: MBPT and coupled-cluster theory. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Shepard, R. (1987). The MCSCF method. Advances in Chemical Physics, 69, 63–200.

    CAS  Google Scholar 

  • Stevens, W. J., Basch, H., & Krauss, M. (1984). Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. The Journal of Chemical Physics, 81, 6026–6033.

    Article  Google Scholar 

  • Stewart, J. J. P. (1989). Optimization of parameters for semiempirical methods. I. Method. Journal of Computational Chemistry, 10, 209–220.

    Article  CAS  Google Scholar 

  • Stewart, J. J. P. (1990). MOPAC: A semiempirical molecular orbital program. Journal of Computer-Aided Molecular Design, 4, 1–103.

    Article  Google Scholar 

  • Stewart, J. J. P. (2007). Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 13, 1173–1213.

    Article  CAS  Google Scholar 

  • Tapia, O., & Goscinski, O. (1975). Self-consistent reaction field-theory of solvent effects. Molecular Physics, 29, 1653.

    Article  CAS  Google Scholar 

  • Tomasi, J., & Persico, M. (1994). Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chemical Reviews, 94, 2027–2094.

    Article  CAS  Google Scholar 

  • Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105, 2999–3093.

    Article  CAS  Google Scholar 

  • Werner, H. (1987). Matrix formulated direct MCSCF and multiconfiguration reference CI methods. Advances in Chemical Physics, 69, 1–62.

    CAS  Google Scholar 

  • Włoch, M., Gour, J. R., Kowalski, K., & Piecuch, P. (2005). Extension of renormalized coupled-cluster methods including triple excitations to excited electronic states of open-shell molecules. The Journal of Chemical Physics, 122, 214107/1–15.

    Article  CAS  Google Scholar 

  • Yabushita, S., Zhang, Z., & Pitzer, R. M. (1999). Spin-orbit configuration interaction using the graphical unitary group approach and relativistic core potential and spin-orbit operators. The Journal of Physical Chemistry, 103, 5791–5800.

    Article  CAS  Google Scholar 

  • Zeng, T., Fedorov, D. G., Schmidt, M. W., & Klobukowski, M. (2011a). Two-component natural spinors for two-step spin-orbit coupled wave functions. The Journal of Chemical Physics, 134, 214107-1–214107-9.

    Google Scholar 

  • Zeng, T., Fedorov, D. G., Schmidt, M. W., & Klobukowski, M. (2011b). Effects of spin-orbit coupling on covalent bonding and the Jahn-Teller effect are revealted with the natural language of spinors. The Journal of Chemical Theory and Computation, 7, 2864–2875.

    Google Scholar 

  • Zerner, M. C. (1991). Semiempirical molecular orbitals methods. In K. B. Lipkowitz & D. B. Boyd (Eds.), Reviews in computational chemistry (Vol. 2, pp. 313–365). New York: VCH Publishers.

    Chapter  Google Scholar 

Download references

Acknowledgments

The work was partly supported by the Research Grant No. G12121041441 to MK from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Zeng, T., Klobukowski, M. (2017). Guide to Programs for Nonrelativistic Quantum Chemistry Calculations. In: Leszczynski, J., Kaczmarek-Kedziera, A., Puzyn, T., G. Papadopoulos, M., Reis, H., K. Shukla, M. (eds) Handbook of Computational Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27282-5_17

Download citation

Publish with us

Policies and ethics