Skip to main content

The Paradigms in Breast Cancer Prevention

  • Chapter
  • First Online:

Abstract

Three important recent models have shaped our current knowledge about breast cancer prevention: the accumulating evidence that the disease originates early in life, the impact of (epi-)genomic imprinting, and the recognition that breast cancer is a family of related but distinct diseases. The breast, the target organ, starting a unique intense growth after the first decade of life and involuting already during the third decade, is tremendously vulnerable to several endogenous and exogenous hormone disrupting molecules and other chemical and physical genotoxic factors. Lifestyle and toxins seem to generate long lasting (epi-)genomic marks especially in rapidly growing tissues such as the breast that can be reset for example by an early first full term pregnancy.

The preclinical interval between generation of susceptibility and appearance of the diseases offers opportunities for primary prevention and presumably has a period when genetic control is modifiable. Reversibility declines progressively when different premalignant or early malignant phenotypes appear. Early detection becomes now the priority and can be achieved through recognition of risk markers that reliably predict disease. Newer sophisticated imaging techniques detect the disease in phases where cure is expected. But these tools don’t address the rapid mortal threat of breast cancer in the third world. This is now the prime concern for the next generations worldwide that probably are best served with affordable primary prevention. High priority must be given to lifestyle research on affordable reversion of (epi-) genomic alterations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADH:

Atypical ductal hyperplasia

ASM:

Allele-specific methylation

BMI:

Body mass index

BRCA 1 and 2:

Breast cancer gene 1 and 2

CE:

Catecholestrogen

CT Scan:

Computerized tomography scan

DCIS:

Ductular carcinoma ‘in situ’

DES:

Diethylstilbestrol

DNA:

Deoxyribonucleic acid

DDT:

Dichlorodiphenyltrichloroethane

EBV:

Epstein-Barr Virus

ER:

Estrogen receptor

FFTP:

First full term pregnancy

hCG:

Human chorionic gonadotropin

HER2:

Human epidermal growth factor receptor type 2

HR:

Hormone receptors (both estrogen and progesterone receptor)

IDA:

Invasive ductular adenocarcinoma

IGF:

Insulin-like growth factor

IGFBP:

Insulin-like growth factor binding protein

lncRNAs:

Long noncoding ribonucleic acids

LOH:

Loss of heterozygosity

miRNA:

Microribonucleic acid

MRI:

Magnetic resonance imaging

PET:

Positron-emission tomography

PR:

Progesterone receptor

rhCG:

Recombinant human chorionic gonadotropin

SHBG:

Sex hormone binding globulin

SR:

Steroid receptor

References

  1. Forouzanfar MH, Foreman KJ, Delossantos AM. Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet. 2011;378:1461–84.

    Article  PubMed  Google Scholar 

  2. Kiguli-Malwadde E, Mubuuke RG, Bugeza S, Mutungi B. Mammography: a review of records in the Department of Radiology at a National Referral Hospital in Uganda. Pan Afr Med J. 2014;18:89.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Edge J, Buccimazza I, Cubasch H, Panieri E. The challenges of managing breast cancer in the developing world—a perspective from sub-Saharan Africa. S Afr Med J. 2014;104:377–9.

    Article  CAS  PubMed  Google Scholar 

  4. Rauh C, Gass P, Heusinger K, et al. Association of molecular subtypes with breast cancer risk factors: a case-only analysis. Eur J Cancer Prev. 2015;24(6):484–90.

    Article  CAS  PubMed  Google Scholar 

  5. Bouchardy C, Fioretta G, Verkooijen HM. Recent increase of breast cancer incidence among women under the age of forty. Br J Cancer. 2007;96:1743–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Gelder R, Heijnsdijk EA, Fracheboud J, et al. The effects of population-based mammography screening starting between age 40 and 50 in the presence of adjuvant systemic therapy. Int J Cancer. 2015;137:165–72.

    Article  PubMed  CAS  Google Scholar 

  7. Senkus E, Cardoso F, Pagani O. Time for more optimism in metastatic breast cancer? Cancer Treat Rev. 2014;40:220–8.

    Article  PubMed  Google Scholar 

  8. Rebbeck TR, Mitra N, Wan F, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA. 2015;313:1347–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Honrado E, Benítez J, Palacios J. The molecular pathology of hereditary breast cancer: genetic testing and therapeutic implications. Mod Pathol. 2005;18:1305–20.

    Article  CAS  PubMed  Google Scholar 

  10. Peterlongo P, Chang-Claude J, Moysich KB, et al. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev. 2015;24:308–16.

    Article  CAS  PubMed  Google Scholar 

  11. Sapkota Y. Germline DNA variations in breast cancer predisposition and prognosis: a systematic review of the literature. Cytogenet Genome Res. 2014;144:77–91.

    Article  CAS  PubMed  Google Scholar 

  12. Martínez-Ramírez OC, Pérez-Morales R, Castro C, et al. Polymorphisms of catechol estrogens metabolism pathway genes and breast cancer risk in Mexican women. Breast. 2013;22:335–43.

    Article  PubMed  Google Scholar 

  13. Paolietti JE. The physiologic role and use of estriol. Int J Pharm Compd. 2009;13:270–5.

    Google Scholar 

  14. Zhu BT, Roy D, Liehr JG. The carcinogenic activity of ethinyl estrogens is determined by both their hormonal characteristics and their conversion to catechol metabolites. Endocrinology. 1993;132:577–83.

    CAS  PubMed  Google Scholar 

  15. Fussell KC, Udasin RG, Smith PJ, et al. Catechol metabolites of endogenous estrogens induce redox cycling and generate reactive oxygen species in breast epithelial cells. Carcinogenesis. 2011;32:1285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lehmann L, Jiang L, Wagner J. Soy isoflavones decrease the catechol-O-methyltransferase-mediated inactivation of 4-hydroxyestradiol in cultured MCF-7 cells. Carcinogenesis. 2008;29:363–70.

    Article  CAS  PubMed  Google Scholar 

  17. Cuzick J, Sestak I, Forbes JF, et al. Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet. 2014;383:1041–8.

    Article  CAS  PubMed  Google Scholar 

  18. Smith-Warner SA, Spiegelman D, Adami HO, et al. Types of dietary fat and breast cancer: a pooled analysis of cohort studies. Int J Cancer. 2001;92:767–74.

    Article  CAS  PubMed  Google Scholar 

  19. Titus-Ernstoff LA, Tosteson AN, Kasales C, et al. Breast cancer risk factors in relation to breast density. Cancer Causes Control. 2006;17:1281–90.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moskowitz CS, Chou JF, Wolden SL, et al. Breast cancer after chest radiation therapy for childhood cancer. J Clin Oncol. 2014;32:2217–23.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Eidemüller M, Holmberg E, Jacob P, et al. Breast cancer risk and possible mechanisms of radiation-induced genomic instability in the Swedish hemangioma cohort after reanalyzed dosimetry. Mutat Res. 2015;775:1–9.

    Article  PubMed  CAS  Google Scholar 

  22. Samuel JC, Ollila DW. Prophylaxis and screening options: recommendations for young women with BRCA mutations. Breast Dis. 2005;23:31–5.

    Article  PubMed  Google Scholar 

  23. Lo P-K, Sukuma S. Epigenomics and breast cancer. Pharmacogenomics. 2008;9:1879–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hochberg Z, Feil R, Constancia M, et al. Child health, developmental plasticity, and epigenetic programming. Endocr Rev. 2011;32:159–224.

    Article  CAS  PubMed  Google Scholar 

  25. Perry JR, Day F, Elks CE, et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014;514:92–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Apter D, Sipilä I. Development of children and adolescents: physiological, pathophysiological, and therapeutic aspects. Curr Opin Obstet Gynaecol. 1993;5:764–73.

    Article  CAS  Google Scholar 

  27. Baanders AN, de Waard F. Breast cancer in Europe. The importance of factors operating at an early age. Eur J Cancer Prev. 1992;1:285–91.

    Article  CAS  PubMed  Google Scholar 

  28. Stoll BA. Western diet, early puberty, and breast cancer risk. Breast Cancer Res Treat. 1998;49:187–93.

    Article  CAS  PubMed  Google Scholar 

  29. Koprowski C, Ross RK, Mack WJ, et al. Diet, body size and menarche in a multiethnic cohort. Br J Cancer. 1999;79:1907–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vihko R, Apter D. Endocrine characteristics of adolescent menstrual cycles: impact of early menarche. Steroid Biochem. 1984;20:231–6.

    Article  CAS  Google Scholar 

  31. Mul D, Fredriks AM, van Buuren S, Oostdijk W, et al. Pubertal development in The Netherlands 1965–1997. Pediatr Res. 2001;50:479–86.

    Article  CAS  PubMed  Google Scholar 

  32. Hesketh T, Ding QJ, Tomkins A. Growth status and menarche in urban and rural China. Ann Human Biol. 2002;29:348–52.

    Article  Google Scholar 

  33. Frisch RE, Revelle R. Height and weight at menarche and a hypothesis of critical body weights and adolescent event. Science. 1970;169:397.

    Article  CAS  PubMed  Google Scholar 

  34. Ritte R, Tikk K, Lukanova A, et al. Reproductive factors and risk of hormone receptor positive and negative breast cancer: a cohort study. BMC Cancer. 2013;13:584.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bardia A, Vachon CM, Olson JE, et al. Relative weight at age 12 and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2008;17:374–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. McCormack VA, Santos Silva I, De Stavola BL, et al. Fetal growth and subsequent risk of breast cancer: results from long term follow-up of Swedish cohort. Br Med J. 2003;326:248–51.

    Article  CAS  Google Scholar 

  37. Johnson AA, Knight EM, Edwards CH, et al. Dietary intakes, anthropometric measurements and pregnancy outcomes. J Nutr. 1994;124:936–42.

    Google Scholar 

  38. Shahi V, Tandon J. A study of maternal determinants and fetal weight. Ind J Maternal Health. 1999;10:13–5.

    CAS  Google Scholar 

  39. De Assis S, Hilakivi-Clarke L. Timing of dietary estrogenic exposures and breast cancer risk. Ann N Y Acad Sci. 2006;1089:14–35.

    Article  PubMed  CAS  Google Scholar 

  40. Leung AW, Mak J, Cheung PS, et al. Evidence for a programming effect of early menarche on the rise of breast cancer incidence in Hong Kong. Cancer Detect Prev. 2008;32:156–61.

    Article  PubMed  Google Scholar 

  41. Weiss-Salz I, Harlap S, Friedlander Y, et al. Ethnic ancestry and increased paternal age are risk factors for breast cancer before the age of 40 years. Eur J Cancer Prev. 2007;16:549–54.

    Article  PubMed  Google Scholar 

  42. Xue F, Colditz GA, Willett WC, et al. Parental age at delivery and incidence of breast cancer: a prospective cohort study. Breast Cancer Res Treat. 2007;104:331–40.

    Article  PubMed  Google Scholar 

  43. Lamartiniere CA. Protection against breast cancer with genistein: a component of soy. Am J Clin Nutr J. 2000;71:1705s–7.

    CAS  Google Scholar 

  44. Petro-Nustas W, Norton ME, al-Masarweh I. Risk factors for breast cancer in Jordanian women. J Nursing Scholarsh. 2002;34:19–25.

    Article  Google Scholar 

  45. Russo IH, Russo J. Role of hormones in mammary cancer initiation and progression. J Mammary Gland Biol Neoplasia. 1998;93:49–61.

    Article  Google Scholar 

  46. Cohn BA, Wolff MS, Cirillo PM, et al. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007;115:1406–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Baglietto L, English DR, Hopper JL, et al. Circulating insulin-like growth factor-I and binding protein-3 and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2007;16:763–8.

    Article  CAS  PubMed  Google Scholar 

  48. Frisch RE. Body fat, menarche, fitness and fertility. Hum Reprod. 1987;2:521–33.

    CAS  PubMed  Google Scholar 

  49. Moisan J, Meyer F, Gingras S. Leisure physical activity and age at menarche. Med Science Sports Exercise. 1991;23:1170–5.

    Article  CAS  Google Scholar 

  50. Sharma SS, Shukla NB. Menarcheal age among Indian sportswomen. Br J Sport Med. 1992;26:129–31.

    Article  CAS  Google Scholar 

  51. Lagerros YT, Hsieh SF, Hsieh CC. Physical activity in adolescence and young adulthood and breast cancer risk: a quantitative review. Eur J Cancer Prev. 2004;13:5–12.

    Article  CAS  PubMed  Google Scholar 

  52. Margolis KL, Mucci L, Braaten T, et al. Physical activity in different periods of life and the risk of breast cancer: the Norwegian-Swedish Women's Lifestyle and Health cohort study. Cancer Epidemiol Biomarkers Prev. 2005;14:27–32.

    PubMed  Google Scholar 

  53. Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumors. Oncogene. 2003;22:5108–21.

    Article  CAS  PubMed  Google Scholar 

  54. Russo IH, Russo J. Pregnancy-induced changes in breast cancer risk. J Mammary Gland Biol Neoplasia. 2011;16:221–33.

    Article  PubMed  Google Scholar 

  55. Shukla V, Coumoul X, Lahusen T. BRCA1 affects global DNA methylation through regulation of DNMT1. Cell Res. 2010;20:1201–15.

    Article  CAS  PubMed  Google Scholar 

  56. Niemczyk M, Ito Y, Huddleston J, et al. Imprinted chromatin around DIRAS3 regulates alternative splicing of GNG12-AS1, a long noncoding RNA. Am J Hum Genet. 2013;93:224–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hung T, Chang HY. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol. 2010;7:582–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Renfree MB, Suzuki S, Kaneko-Ishino T. The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Romanelli V, Nakabayashi K, Vizoso M, et al. Variable maternal methylation overlapping the nc886/vtRNA2-1 locus is locked between hypermethylated repeats and is frequently altered in cancer. Epigenetics. 2014;9:783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Randhawa GS, Cui JA, Strichman-Almashanu LZ, et al. Loss of imprinting in disease progression in chronic myelogenous leukemia. Blood. 1998;91:3144–7.

    CAS  PubMed  Google Scholar 

  61. Dolinoy DC, Das R, Weidman JR, et al. Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr Res. 2007;61:30R–7.

    Article  PubMed  Google Scholar 

  62. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition. 2004;20:63–8.

    Article  CAS  PubMed  Google Scholar 

  63. Romagnolo DF, Zempleni J, Selmin OI. Nuclear receptors and epigenetic regulation: opportunities for nutritional targeting and disease prevention. Adv Nutr. 2014;5:373–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kalla SS, Tan QW, Brito C, et al. Differential insulin-like growth factor II (IGF-II) expression: a potential role for breast cancer survival disparity. Growth Horm IGF Res. 2010;20:162–70.

    Article  PubMed Central  CAS  Google Scholar 

  65. Park J, Sarode VR, Euhus D, et al. Neuregulin 1-HER axis as a key mediator of hyperglycemic memory effects in breast cancer. Proc Natl Acad Sci U S A. 2012;109:21058–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Susiarjo M, Sasson I, Mesaros C, et al. Bisphenol A exposure disrupts genomic imprinting in the mouse. PLoS Genet. 2013;9(4):e1003401. doi:10.1371/journal.pgen.1003401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Barrow TM, Barault L, Ellsworth RE, et al. Aberrant methylation of imprinted genes is associated with negative hormone receptor status in invasive breast cancer. Int J Cancer. 2015;137(3):537–47.

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez BA, Weng YI, Liu TM, et al. Estrogen-mediated epigenetic repression of the imprinted gene cyclin-dependent kinase inhibitor 1C in breast cancer cells. Carcinogenesis. 2011;32:812–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kang L, Sun J, Wen X, et al. Aberrant allele-switch imprinting of a novel IGF1R intragenic antisense non-coding RNA in breast cancers. Eur J Cancer. 2015;51:260–70.

    Article  CAS  PubMed  Google Scholar 

  70. Bergman D, Halje M, Nordin M, Engström W. Insulin-like growth factor 2 in development and disease: a mini-review. Gerontology. 2013;59:240–9.

    Article  CAS  PubMed  Google Scholar 

  71. Shetty PJ, Movva S, Pasupuleti N. Regulation of IGF2 transcript and protein expression by altered methylation in breast cancer. J Cancer Res Clin Oncol. 2011;137:339–45.

    Article  CAS  PubMed  Google Scholar 

  72. Riaz M, van Jaarsveld MT, Hollestelle A et al. miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Res. 2013;15:R33.

    Google Scholar 

  73. Barrow TM, Barault L, Ellsworth RE, et al. Aberrant methylation of imprinted genes is associated with negative hormone receptor status in invasive breast cancer. Int J Cancer. 2015;137(3):537–47.

    Article  CAS  PubMed  Google Scholar 

  74. Allred DC, Mohsin SK, Fuqua SAW. Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer. 2001;8:47–61.

    Article  CAS  PubMed  Google Scholar 

  75. Barr FE, Degnim AC, Hartmann LC, et al. Estrogen receptor expression in atypical hyperplasia: lack of association with breast cancer. Cancer Prev Res. 2011;4:435–44.

    Article  Google Scholar 

  76. Clark SE, Warwick J, Carpenter R, et al. Molecular subtyping of DCIS: heterogeneity of breast cancer reflected in pre-invasive disease. Br J Cancer. 2011;104:120–7.

    Article  CAS  PubMed  Google Scholar 

  77. Muggerud AA, Hallett M, Johnsen H, et al. Molecular diversity in ductal carcinoma in situ (DCIS) and early invasive breast cancer. Mol Oncol. 2010;4:357–68.

    Article  CAS  PubMed  Google Scholar 

  78. Wu L, de Bruin A, Wang H, et al. Selective roles of E2Fs for ErbB2- and Myc-mediated mammary tumorigenesis. Oncogene. 2015;34:119–28.

    Article  CAS  PubMed  Google Scholar 

  79. Newie I, Søkilde R, Persson H, et al. The HER2-encoded miR-4728-3p regulates ESR1 through a non-canonical internal seed interaction. PLoS One. 2014;9, e97200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Beristain AG, Molyneux SD, Joshi PA, et al. PKA signaling drives mammary tumorigenesis through Src. Oncogene. 2015;34:1160–11673.

    Article  CAS  PubMed  Google Scholar 

  81. Fry EA, Taneja P, Maglic D, et al. Dmp1α inhibits HER2/neu-induced mammary tumorigenesis. PLoS. 2013;8, e77870.

    Article  CAS  Google Scholar 

  82. Moumen M, Chiche A, Decraene C, et al. Myc is required for β-catenin-mediated mammary stem cell amplification and tumorigenesis. Mol Cancer. 2013;12:132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Dolle JM, Daling JR, White E, et al. Risk factors for triple-negative breast cancer in women under the age of 45 years. Cancer Epidemiol Biomarkers Prev. 2009;18:1157–66.

    Article  PubMed  PubMed Central  Google Scholar 

  84. García-Castro A, Zonca M, Florindo-Pinheiro D, et al. APRIL promotes breast tumor growth and metastasis and is associated with aggressive basal breast cancer). Carcinogenesis. 2015;36:574–84.

    Article  PubMed  Google Scholar 

  85. Hafez MM, Al-Shabanah OA, Al-Rejaie SS, et al. Increased hypermethylation of glutathione S-transferase P1, DNA-binding protein inhibitor, death associated protein kinase and paired box protein-5 genes in triple-negative breast cancer Saudi females. Asian Pac J Cancer Prev. 2015;16:541–9.

    Article  PubMed  Google Scholar 

  86. Horst KC, Hancock SL, Ognibene G, et al. Histologic subtypes of breast cancer following radiotherapy for Hodgkin lymphoma. Ann Oncol. 2014;25:848–51.

    Article  CAS  PubMed  Google Scholar 

  87. Sandhu R, Rein J, D'Arcy M, et al. Overexpression of miR-146a in basal-like breast cancer cells confers enhanced tumorigenic potential in association with altered p53 status. Carcinogenesis. 2014;35:2567–75.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Brücher BL, Jamall IS. Epistemology of the origin of cancer: a new paradigm. BMC Cancer. 2014;14:331.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tehranifar P, Protacio A, Akinyemiju TF, et al. Acculturation and ethnic variations in breast cancer risk factors, Gail model risk estimates and mammographic breast density. Cancer Epidemiol Biomarkers Prev. 2015;24:760.

    Article  Google Scholar 

  90. Figueroa JD, Pfeiffer RM, Patel DA, et al. (2014) Terminal duct lobular unit involution of the normal breast: implications for breast cancer etiology. J Natl Cancer Inst. 2014;106(10)

    Google Scholar 

  91. Work ME, Reimers LL. Changes in mammographic density over time in breast cancer cases and women at high risk for breast cancer. Int J Cancer. 2014;135:1740–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Colditz GA, Bohlke K, Berkey CS. Breast cancer risk accumulation starts early: prevention must also. Breast Cancer Res Treat. 2014;145:567–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ansquer Y, Delaney S, Santulli P, et al. Risk of invasive breast cancer after lobular intra-epithelial neoplasia: review of the literature. Eur J Surg Oncol. 2010;36:604–9.

    Article  CAS  PubMed  Google Scholar 

  94. Heikkinen T, Kärkkäinen H, Aaltonen K, et al. The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. Clin Cancer Res. 2009;15:3214–22.

    Article  CAS  PubMed  Google Scholar 

  95. Kohler BA, Sherman RL, Howlader N, et al. Annual report to the nation on the status of cancer, 1975-2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state. J Natl Cancer Inst. 2015;107(6):djv048.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Decensi A, Robertson C, Guerrieri-Gonzaga A, et al. Randomized double-blind 2 × 2 trial of low-dose tamoxifen and fenretinide for breast cancer prevention in high-risk premenopausal women. J Clin Oncol. 2009;27:3749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Santucci-Pereira J, George C, Armiss D, et al. Mimicking pregnancy as a strategy for breast cancer prevention. Breast Cancer Manag. 2013;2:283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Masood S. Development of a novel approach for breast cancer prediction and early detection using minimally invasive procedures and molecular analysis: how cytomorphology became a breast cancer risk predictor. Breast J. 2015;21:82–96.

    Article  PubMed  Google Scholar 

  99. Janssens JP. New direct and frontal tissue acquisition tools for gene expression analysis in personalized medicine. Curr Pharmacogenomics and Personalized Medicine. 2010;8:38–48.

    Article  Google Scholar 

  100. Anand P, Kunnumakara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25:2097–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.

    Article  CAS  PubMed  Google Scholar 

  102. Esposito K, Chiodini P, Colao A, et al. Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care. 2012;35:2402–11.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Boyle P, Koechlin A, Autier P. Sweetened carbonated beverage consumption and cancer risk: meta-analysis and review. Eur J Cancer Prev. 2014;23:481–90.

    Article  CAS  PubMed  Google Scholar 

  104. Robinson WR, Tse CK, Olshan AF, et al. Body size across the life course and risk of premenopausal and postmenopausal breast cancer in Black women, the Carolina Breast Cancer Study, 1993-2001. Cancer Causes Control. 2014;25:1101–17.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ma H, Xu X, Ursin G, et al. Reduced risk of breast cancer associated with recreational physical activity varies by HER2 status. Cancer Med. 2015;4(7):1122–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McKenzie F, Ferrari P, Freisling H, et al. Healthy lifestyle and risk of breast cancer among postmenopausal women in the European Prospective Investigation into Cancer and Nutrition cohort study. Int J Cancer. 2015;136:2640–8.

    Article  CAS  PubMed  Google Scholar 

  107. Teegarden D, Romieu I, Lelièvre SA. Redefining the impact of nutrition on breast cancer incidence: is epigenetics involved? Nutr Res Rev. 2012;25:68–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Glasziou P, Houssami N. The evidence base for breast cancer screening. Prev Med. 2001;53:100–2.

    Article  Google Scholar 

  109. Lamartiniere CA, Cotroneo MS, Fritz WA, et al. Genistein chemoprevention: timing and mechanisms of action in murine mammary and prostate. J Nutr. 2002;132:552S–8.

    PubMed  Google Scholar 

  110. Signori C, DuBrock C, Richie JP, et al. Administration of omega-3 fatty acids and Raloxifene to women at high risk of breast cancer: interim feasibility and biomarkers analysis from a clinical trial. Eur J Clin Nutr. 2012;66:878–84.

    Article  CAS  PubMed  Google Scholar 

  111. Santucci-Pereira J, George C, Armiss D, et al. Mimicking pregnancy as a strategy for breast cancer prevention. Breast Cancer Manag. 2013;2:283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Datta J, Xu S, Rosemblit C. CD4+ T-helper Type 1 cytokines and trastuzumab facilitate CD8+ T-cell targeting of HER2/neu-expressing cancers. Cancer Immunol Res. 2015;3:455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vogel VG. Role of hormones in cancer prevention. Am Soc Clin Oncol Educ Book. 2014;34–40.

    Google Scholar 

  114. Murtola TJ, Visvanathan K, Artama M, et al. Statin use and breast cancer survival: a nationwide cohort study from Finland. PLoS One. 2014;9, e110231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaak Janssens M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Janssens, J. (2016). The Paradigms in Breast Cancer Prevention. In: Russo, J. (eds) Trends in Breast Cancer Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-27135-4_1

Download citation

Publish with us

Policies and ethics