Skip to main content

Thiazole Orange-Tethered Nucleic Acids and ECHO Probes for Fluorometric Detection of Nucleic Acids

  • Chapter
  • First Online:
Modified Nucleic Acids

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 31))

Abstract

Thiazole orange (TO) is a well-known fluorescent dye that emits strong fluorescence when it binds to nucleic acid. A number of TO-tethered nucleic acids have been developed for the fluorometric detection of nucleic acids. This chapter summarizes several TO-tethered nucleic acids and shows how the diverse range of such fluorescence-modified nucleic acids enriches the methodology available for DNA sequence typing and RNA monitoring. In addition, the chapter highlights recent advances in exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probes, which have a fluorescence-labeled nucleotide in which two TO subunits are linked covalently. ECHO probes have enabled fluorometric distinction between the probe distribution and target RNA localization in living cells. Further modifications of ECHO probes have made possible a variety of practical applications for intracellular RNA imaging, with the most recent derivatives possessing diverse abilities such as nuclease resistance, photoactivation, self-avoidance, binding to higher-ordered structures, and multicoloring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoki I, Kawabata H, Nakashima K, Shinkai SJ (1991) Chem Soc Chem Commun 1771–1773

    Google Scholar 

  2. Paris PL, Langenhan JM, Kool ET (1998) Nucleic Acids Res 26:3789–3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nishizawa S, Kato Y, Teramae N (1999) J Am Chem Soc 121:9463–9464

    Article  CAS  Google Scholar 

  4. Yamana K, Iwai T, Ohtani Y, Sato S, Nakamura M, Nakano H (2002) Bioconjugate Chem 13:1266–1273

    Article  CAS  Google Scholar 

  5. Okamoto A, Ichiba T, Saito I (2004) J Am Chem Soc 126:8364–8365

    Article  CAS  PubMed  Google Scholar 

  6. Lee HN, Xu Z, Kim SK, Swamy KMK, Kim Y, Kim S-J, Yoon J (2007) J Am Chem Soc 129:3828–3829

    Article  CAS  PubMed  Google Scholar 

  7. Weber G, Farris FJ (1979) Biochemistry 18:3075–3078

    Article  CAS  PubMed  Google Scholar 

  8. Grynkiewicz G, Poenie M, Tsien RY (1985) J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  9. Macgregor RB, Weber G (1986) Nature 319:70–73

    Article  CAS  PubMed  Google Scholar 

  10. Pierce DW, Boxer SG (1992) J Phys Chem 96:5560–5566

    Article  CAS  Google Scholar 

  11. Martin MM, Plaza P, Meyer YH, Badaoui F, Bourson J, Lefèvre JP, Valeur B (1996) J Phys Chem 100:6879–6888

    Article  CAS  Google Scholar 

  12. Cohen BE, McAnaney TB, Park ES, Jan YN, Boxer SG, Jan LY (2002) Science 296:1700–1703

    Article  CAS  PubMed  Google Scholar 

  13. Okamoto A, Tainaka K, Nishiza K, Saito I (2005) J Am Chem Soc 127:13128–13129

    Article  CAS  PubMed  Google Scholar 

  14. Okamoto A, Tainaka K, Unzai T, Saito I (2007) Tetrahedron 63:3465–3470

    Article  CAS  Google Scholar 

  15. Tainaka K, Tanaka K, Ikeda S, Nishiza K, Unzai T, Fujiwara Y, Saito I, Okamoto A (2007) J Am Chem Soc 129:4776–4784

    Article  CAS  PubMed  Google Scholar 

  16. Fages F, Desvergne JP, Bouas-Laurent H, Marsau P, Lehn JM, Kotzyba-Hibert F, Albrecht-Gary AM, Al-Joubbeh M (1989) J Am Chem Soc 111:8672–8680

    Article  CAS  Google Scholar 

  17. Bissell RA, de Silva AP, Gunaratne HQN, Lynch PLM, Maguire GEM, McCoy CP, Sandanayake KRAS (1993) Top Curr Chem 168:223–264

    Article  CAS  Google Scholar 

  18. James TD, Sandanayake KRAS, Iguchi R, Shinkai S (1995) J Am Chem Soc 117:8982–8987

    Article  CAS  Google Scholar 

  19. Bergonzi R, Fabbrizzi L, Lichelli M, Mangano C (1998) Coord Chem Rev 170:31–46

    Article  CAS  Google Scholar 

  20. Walkup GK, Burdette SC, Lippard SL, Tsien RY (2000) J Am Chem Soc 122:5644–5645

    Article  CAS  Google Scholar 

  21. Miura T, Urano Y, Tanaka K, Nagano T, Ohkubo K, Fukuzumi S (2003) J Am Chem Soc 125:8666–8671

    Article  CAS  PubMed  Google Scholar 

  22. Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T (2005) J Am Chem Soc 127:4888–4894

    Article  CAS  PubMed  Google Scholar 

  23. Wu P, Rice KG, Brand L, Lee YC (1991) Proc Natl Acad Sci USA 88:9355–9359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mergny J-L, Boutorine AS, Garestier T, Belloc F, Rougée M, Bulychev NV, Koshkin AA, Bourson J, Lebedev AV, Valeur B, Thuong NT, Hélène C (1994) Nucleic Acids Res 22:920–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu P, Brand L (1994) Anal Biochem 218:1–13

    Article  CAS  PubMed  Google Scholar 

  26. Hillisch A, Lorenz M, Diekmann S (2001) Curr Opin Struct Biol 11:201–207

    Article  CAS  PubMed  Google Scholar 

  27. Klostermeier D, Millar DP (2002) Biopolymers 67:159–179

    Article  CAS  Google Scholar 

  28. Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  29. van der Meer BW, Coker G III, Chen S-YS (1994) Resonance energy transfer: theory and data. VCH, New York

    Google Scholar 

  30. Fang X, Li JJ, Perlette J, Tan W, Wang K (2000) Anal Chem 72:747A–753A

    Article  CAS  PubMed  Google Scholar 

  31. Broude NE (2002) Trends Biotechnol 20:249–256

    Article  CAS  PubMed  Google Scholar 

  32. Okamoto A, Tanabe K, Inasaki T, Saito I (2003) Angew Chem Int Ed 42:2502–2504

    Article  CAS  Google Scholar 

  33. Tan W, Wang K, Drake TJ (2004) Curr Opin Chem Biol 8:547–553

    Article  CAS  PubMed  Google Scholar 

  34. Tyagi S, Kramer FR (1996) Nat Biotechnol 14:303–308

    Article  CAS  PubMed  Google Scholar 

  35. Tyagi S, Btaru DP, Kramer FR (1998) Nat Biotechnol 16:49–53

    Article  CAS  PubMed  Google Scholar 

  36. Piatek AS, Tyagi S, Pol AC, Telenti A, Miller LP, Kramer FR, Alland D (1998) Nat Biotechnol 16:359–363

    Article  CAS  PubMed  Google Scholar 

  37. Nygren J, Svanvik N, Kubista M (1998) Biopolymers 46:39–51

    Article  CAS  PubMed  Google Scholar 

  38. Lee LG, Chen C-H, Chiu LA (1986) Cytometry 7:508–517

    Article  CAS  PubMed  Google Scholar 

  39. Rye HS, Yue S, Wemmer DE, Quesada MA, Haugland RP, Mathies RA, Glazer AN (1992) Nucleic Acids Res 20:2803–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ikeda S, Okamoto A (2007) Photochem Photobiol Sci 6:1197–1201

    Article  CAS  PubMed  Google Scholar 

  41. Svanvik N, Westman G, Wang D, Kubista M (2000) Anal Biochem 281:26–35

    Article  CAS  PubMed  Google Scholar 

  42. Kummer S, Knoll A, Socher E, Bethge L, Herrmann A, Seitz O (2012) Bioconjugate Chem 23:2051–2060

    Article  CAS  Google Scholar 

  43. Karunakaran V, Lustres JLP, Zhao L, Ernsting NP, Seitz O (2006) J Am Chem Soc 128:2954–2962

    Article  CAS  PubMed  Google Scholar 

  44. Silva GL, Ediz V, Yaron D, Armitage BA (2007) J Am Chem Soc 129:5710–5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carlsson C, Larsson A, Jonsson M, Albinsson B, Norden B (1994) J Phys Chem 98:10313–10321

    Article  CAS  Google Scholar 

  46. Ghasemi J, Ahmadi S, Ahmad AI, Ghobadi S (2008) Appl Biochem Biotechnol 149:9–22

    Article  CAS  PubMed  Google Scholar 

  47. Netzel TL, Nafisi K, Ziao M, Lenhard JR, Johnson I (1995) J Phys Chem 99:17936–17947

    Article  CAS  Google Scholar 

  48. Benson SC, Mathies RA, Glazer AN (1993) Nucleic Acids Res 21:5720–5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Benson SC, Singh P, Glazer AN (1993) Nucleic Acids Res 21:5727–5735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hirons GT, Fawcett JJ, Crissman HA (1994) Cytometry 15:129–140

    Article  CAS  PubMed  Google Scholar 

  51. Jacobsen JP, Pedersen JB, Hansen LF, Wemmer DE (1995) Nucleic Acids Res 23:753–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hansen LF, Jensen LK, Jacobsen JP (1996) Nucleic Acids Res 24:859–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Krull UJ (2005) Bioorg Med Chem Lett 15:1725–1729

    Article  CAS  PubMed  Google Scholar 

  54. Privat E, Asseline U (2001) Bioconjugate Chem 12:757–769

    Article  CAS  Google Scholar 

  55. Köhler O, Jarikote DV, Seitz O (2005) ChemBioChem 6:69–77

    Article  PubMed  CAS  Google Scholar 

  56. Berndl S, Wagenknecht H-A (2009) Angew Chem Int Ed 48:2418–2421

    Article  CAS  Google Scholar 

  57. Hara Y, Fujii T, Kashida H, Sekiguchi K, Liang X, Niwa K, Takase T, Yoshida Y, Asanuma H (2010) Angew Chem Int Ed 49:5502–5506

    Article  CAS  Google Scholar 

  58. Ishiguro T, Saitoh J, Yawata H, Otsuka M, Inoue T, Sugiura Y (1996) Nucleic Acids Res 24:4992–4997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hanafi-Bagby D, Piunno PAE, Wust CC, Krull UJ (2000) Anal Chim Acta 411:19–30

    Article  CAS  Google Scholar 

  60. Wang X, Krull UJ (2002) Anal Chim Acta 470:57–70

    Article  CAS  Google Scholar 

  61. Algar WR, Massey M, Krull UJ (2006) J Fluoresc 16:555–567

    Article  CAS  PubMed  Google Scholar 

  62. Asseline U, Chassignol M, Aubert Y, Roig V (2006) Org Biomol Chem 4:1949–1957

    Article  CAS  PubMed  Google Scholar 

  63. Lartia R, Asseline U (2006) Chem Eur J 12:2270–2281

    Article  CAS  PubMed  Google Scholar 

  64. Privat E, Melvin T, Asseline U, Vigny P (2001) Photochem Photobiol 74:532–541

    Article  CAS  PubMed  Google Scholar 

  65. Svanvik N, Nygren J, Westman G, Kubista M (2001) J Am Chem Soc 123:803–809

    Article  CAS  PubMed  Google Scholar 

  66. Jarikote DV, Krebs N, Tannert S, Röder B, Seitz O (2007) Chem Eur J 13:300–310

    Article  CAS  PubMed  Google Scholar 

  67. Socher E, Jarikote DV, Knoll A, Röglin L, Burmeister J, Seitz O (2008) Anal Biochem 375:318–330

    Article  CAS  PubMed  Google Scholar 

  68. Köhler O, Seitz O (2003) Chem Commun 2938–2939

    Google Scholar 

  69. Köhler O, Jarikote DV, Seitz O (2004) Chem Commun 2674–2675

    Google Scholar 

  70. Jarikote DV, Köhler O, Socher E, Seitz O (2005) Eur J Org Chem 2005:3187–3195

    Google Scholar 

  71. Serndl S, Wagenknecht H-A (2009) Angew Chem Int Ed 48:2418–2421

    Article  CAS  Google Scholar 

  72. Menacher F, Rubner M, Berndl S, Wagenknecht H-A (2008) J Org Chem 73:4263–4266

    Article  CAS  PubMed  Google Scholar 

  73. Kamiya Y, Ito A, Ito H, Urushihara M, Takai J, Fujii T, Liang X, Kashida H, Asanuma H (2013) Chem Sci 4:4016–4021

    Article  CAS  Google Scholar 

  74. Khairutdinov RF, Serpone N (1997) J Phys Chem B 101:2602–2610

    Article  CAS  Google Scholar 

  75. Simon LD, Abramo KH, Sell JK, McGown LB (1998) Biospectroscopy 4:17–25

    Article  CAS  PubMed  Google Scholar 

  76. Cosa G, Focsaneanu K-S, McLean JRN, McNamee JP, Scaiano JC (2001) Photochem Photobiol 73:585–599

    Article  CAS  PubMed  Google Scholar 

  77. Sagawa T, Tobata H, Ihara H (2004) Chem Commun 2–4

    Google Scholar 

  78. Fürstenberg A, Julliard MD, Deligeorgiev TG, Gadjev NI, Vasilev AA, Vauthey E (2006) J Am Chem Soc 128:7661–7669

    Article  PubMed  CAS  Google Scholar 

  79. West W, Pearce S (1965) J Phys Chem 69:1894–1903

    Article  CAS  Google Scholar 

  80. Czikkely V, Forsterling HD, Kuhn H (1970) Chem Phys Lett 6:207–210

    Article  CAS  Google Scholar 

  81. Harrison WJ, Mateer DL, Tiddy G-J Jr (1996) J Phys Chem 100:2310–2321

    Article  CAS  Google Scholar 

  82. Zeena S, Thomas KG (2001) J Am Chem Soc 123:7859–7865

    Article  CAS  PubMed  Google Scholar 

  83. Hannah KC, Armitage BA (2004) Acc Chem Res 37:845–853

    Article  CAS  PubMed  Google Scholar 

  84. Rösch U, Yao S, Wortmann R, Würthner F (2006) Angew Chem Int Ed 45:7026–7030

    Article  CAS  Google Scholar 

  85. Kasha M (1963) Radiat Res 20:55–70

    Article  CAS  PubMed  Google Scholar 

  86. Kasha M, Rawls HR, El-Bayoumi MA (1965) Pure Appl Chem 11:371–392

    Article  CAS  Google Scholar 

  87. Levinson GL, Simpson WT, Curtis W (1957) J Am Chem Soc 79:4314–4320

    Article  CAS  Google Scholar 

  88. McRae EG, Kasha M (1958) J Chem Phys 28:721–722

    Article  CAS  Google Scholar 

  89. Ikeda S, Okamoto A (2008) Chem Asian J 3:958–968

    Article  CAS  PubMed  Google Scholar 

  90. Okamoto A (2010) Chem Rec 10:188–196

    Article  CAS  PubMed  Google Scholar 

  91. Ashwell M, Jones AS, Kumar A, Sayers JR, Walker RT, Sakuma T, de Clercq E (1987) Tetrahedron 43:4601–4608

    Article  CAS  Google Scholar 

  92. Ikeda S, Yuki M, Yanagisawa H, Okamoto A (2009) Tetrahedron Lett 50:7191–7195

    Article  CAS  Google Scholar 

  93. Switzer CY, Moroney SE, Benner SA (1993) Biochemistry 32:10489–10496

    Article  CAS  PubMed  Google Scholar 

  94. Froehler BC, Matteucci MD (1983) Nucleic Acids Res 11:8031–8036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang DO, Okamoto A (2012) J Photochem Photobiol C 13:112–123

    Article  CAS  Google Scholar 

  96. Okamoto A (2011) Chem Soc Rev 40:5815–5828

    Article  CAS  PubMed  Google Scholar 

  97. Kimura Y, Hanami T, Tanaka Y, de Hoon MJL, Soma T, Harbers M, Lezhava A, Hayashizaki Y, Usui K (2012) Biochemistry 51:6056–6067

    Article  CAS  PubMed  Google Scholar 

  98. Wang DO, Matsuno H, Ikeda S, Nakamura A, Yanagisawa H, Hayashi Y, Okamoto A (2012) RNA 18:166–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kubota T, Ikeda S, Okamoto A (2009) Bull Chem Soc Jpn 82:110–117

    Article  CAS  Google Scholar 

  100. Kubota T, Ikeda S, Yanagisawa H, Yuki M, Okamoto A (2011) Bioconjugate Chem 22:1625–1630

    Article  CAS  Google Scholar 

  101. Ikeda S, Kubota T, Yuki M, Okamoto A (2009) Angew Chem Int Ed 48:6480–6484

    Article  CAS  Google Scholar 

  102. Ikeda S, Yanagisawa H, Nakamura A, Wang DO, Yuki M, Okamoto A (2011) Org Biomol Chem 9:4199–4204

    Article  CAS  PubMed  Google Scholar 

  103. Okamoto A, Sugizaki K, Yuki M, Yanagisawa H, Ikeda S, Sueoka T, Hayashi G, Wang DO (2013) Org Biomol Chem 11:362–371

    Article  CAS  PubMed  Google Scholar 

  104. Miyawaki A (2003) Dev Cell 4:295–305

    Article  CAS  PubMed  Google Scholar 

  105. Ikeda S, Kubota T, Wang DO, Yanagisawa H, Yuki M, Okamoto A (2011) Org Biomol Chem 9:6598–6603

    Article  CAS  PubMed  Google Scholar 

  106. Kubota T, Ikeda S, Yanagisawa H, Yuki M, Okamoto A (2009) Bioconjugate Chem 20:1256–1261

    Article  CAS  Google Scholar 

  107. Freier SM, Altmann KH (1997) Nucleic Acids Res 25:4429–4443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lesnik EA, Freier SM (1998) Biochemistry 37:6991–6997

    Article  CAS  PubMed  Google Scholar 

  109. Cramer H, Pfleiderer W (2000) Nucleosides Nucleotides Nucleic Acids 19:1765–1777

    Article  CAS  PubMed  Google Scholar 

  110. Petersen M, Wengel J (2003) Trends Biotechnol 21:74–81

    Article  CAS  PubMed  Google Scholar 

  111. Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Olsen CE, Wengel J (1998) Tetrahedron 54:3607–3630

    Article  CAS  Google Scholar 

  112. Chou L-S, Meadows C, Wittwer CT, Lyon E (2005) BioTechniques 39:644–647

    Article  CAS  PubMed  Google Scholar 

  113. Tolstrup N, Nielsen PS, Kolberg JG, Frankel AM, Vissing H, Kauppinen S (2003) Nucleic Acids Res 31:3758–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Simeonov A, Nikiforov TT (2002) Nucleic Acids Res 30:e91

    Article  PubMed  PubMed Central  Google Scholar 

  115. Sugizaki K, Okamoto A (2010) Bioconjugate Chem 21:2276–2281

    Article  CAS  Google Scholar 

  116. Dingwall C, Ernberg I, Gait MJ, Green SM, Heaphy S, Karn J, Lowe AD, Singh M, Skinner MA (1990) EMBO J 9:4145–4153

    CAS  PubMed  PubMed Central  Google Scholar 

  117. You Y, Moreira BG, Behlke MA, Owczarzy R (2006) Nucleic Acids Res 34:e60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Lo YMD, Tsui NBY, Chiu RWK, Lau TK, Leung TN, Heung MMS, Gerovassili A, Jin Y, Nicolaides KH, Cantor CR, Ding C (2007) Nat Med 13:218–223

    Article  CAS  PubMed  Google Scholar 

  119. Go ATJI, Visser A, Mulders MAM, Blankenstein MA, van Vugt JMG, Oudejans CBM (2007) Clin Chem 53:2223–2224

    Article  CAS  PubMed  Google Scholar 

  120. Woo J, Meyer RB, Gamper HB (1996) Nucleic Acids Res 24:2470–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lahoud G, Timoshchuk V, Lebedev A, de Vega M, Salas M, Arar K, Hou Y-M, Gamper H (2008) Nucleic Acids Res 36:3409–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hoshina S, Chen F, Leal NA, Benner SA (2008) Nucleic Acids Symp Ser 52:129–130

    Article  CAS  Google Scholar 

  123. Ikeda S, Kubota T, Yuki M, Yanagisawa H, Tsuruma S, Okamoto A (2010) Org Biomol Chem 8:546–551

    Article  CAS  PubMed  Google Scholar 

  124. Ikeda S, Kubota T, Wang DO, Yanagisawa H, Umemoto T, Okamoto A (2011) ChemBioChem 12:2871–2880

    Article  CAS  PubMed  Google Scholar 

  125. Bancaud A, Huet S, Rabut G, Ellenberg J (2010) In: Goldman RD, Swedlow JR, Spector DL (eds) Live cell imaging: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 67–94

    Google Scholar 

  126. Lippincott-Schwartz J, Snappl E, Kenworthy A (2001) Nat Rev Mol Cell Biol 2:444–456

    Article  CAS  PubMed  Google Scholar 

  127. Klonis N, Rug M, Harper I, Wickham M, Cowman A, Tilley L (2002) Eur Biophys J 31:36–51

    Article  CAS  PubMed  Google Scholar 

  128. Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J (1997) J Cell Biol 138:1193–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Handwerger KE, Murphy C, Gall JG (2003) J Cell Biol 160:495–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cole NB, Smith CL, Sciaky N, Terasaki M, Edidin M, Lippincott-Schwartz J (1996) Science 273:797–801

    Article  CAS  PubMed  Google Scholar 

  131. Belgareh N, Rabut G, Bai SW, van Overbeek M, Beaudouin J, Daigle N, Zatsepina OV, Pasteau F, Labas V, Fromont-Racine M, Ellengerg J, Doye V (2001) J Cell Biol 154:1147–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Phair RD, Misteli T (2000) Nature 404:604–609

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks the members of the Okamoto Laboratory for helpful discussions. The research on ECHO probes in Okamoto Laboratory was supported by the Funding Program for Next Generation World-Leading Researchers, Japan (LR036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akimitsu Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Okamoto, A. (2016). Thiazole Orange-Tethered Nucleic Acids and ECHO Probes for Fluorometric Detection of Nucleic Acids. In: Nakatani, K., Tor, Y. (eds) Modified Nucleic Acids. Nucleic Acids and Molecular Biology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-27111-8_3

Download citation

Publish with us

Policies and ethics