Skip to main content

Tagatose Stability Issues in Food Systems

  • Reference work entry
  • First Online:
Sweeteners

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Tagatose is a monosaccharide that may be used in food and beverage products as a bulk low-calorie sweetener, a flavor enhancer, or a prebiotic. Several studies have shown that tagatose, as a powder or dissolved in solution, can break down and cause discoloration. The extent of degradation depends upon product composition and the storage environment. Tagatose powder is susceptible to sticking, deliquescence, discoloration, and degradation that are enhanced by higher relative humidities and temperatures. In solution, citrate and phosphate buffers catalyze tagatose degradation, especially at higher pH levels. Amino acids and other solutes can react with tagatose to promote browning reactions. Degradation and browning are both accelerated by increases in temperature. During pasteurization, tagatose losses would be less than 1%. Refrigeration would enable 98% of the original tagatose concentration to remain in beverages stored for 6 months. Food product formulations and proper storage conditions can be used to optimize tagatose stability while controlling discoloration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bell LN (2015) Tagatose stability in beverages as impacted by composition and thermal processing. In: Preedy VR (ed) Processing and impact on active components in food. Academic, London

    Google Scholar 

  2. Angyal SJ, Bethell GS (1976) Conformational analysis in carbohydrate chemistry. III the 13-C N.M.R. spectra of the hexuloses. Aust J Chem 29:1249–1265

    Article  CAS  Google Scholar 

  3. Wolff GJ, Breitmaier E (1979) 13-C-NMR-spektroskopische bestimmung der keto-form in wäßrigen lösungen der d-fructose, l-sorbose und d-tagatose. Chem Z 103:232–233

    CAS  Google Scholar 

  4. Skytte UP (2006) Tagatose. In: Mitchell H (ed) Sweeteners and sugar alternatives in food technology. Blackwell Publishing, Ames

    Google Scholar 

  5. Jayamuthunagai J, Gautan P, Srisowmeya G, Chakravarthy M (2016) Biocatalytic production of d-tagatose: a potential rare sugar with versatile applications. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2015.1126550

    Google Scholar 

  6. Vastenavond CM, Bertelsen H, Hansen SJ, Laursen RS, Saunders J, Eriknauer K (2011) Tagatose (d-tagatose). In: O’Brien-Nabors L (ed) Alternative sweeteners, 4th edn. CRC, Baton Rouge

    Google Scholar 

  7. Gibson GF, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  Google Scholar 

  8. Livesey G, Brown JC (1996) d-tagatose is a bulk sweetener with zero energy determined in rats. J Nutr 126:1601–1609

    CAS  Google Scholar 

  9. Bertelsen H, Jensen BB, Buemann B (1999) d-tagatose – a novel low-calorie bulk sweetener with prebiotic properties. World Rev Nutr Diet 85:98–109

    Article  CAS  Google Scholar 

  10. Laerke HN, Jensen BB (1999) d-tagatose has low small intestinal digestibility but high large intestinal fermentability in pigs. J Nutr 129:1002–1009

    CAS  Google Scholar 

  11. Laerke HN, Jensen BB, Hojsgaard S (2000) In vitro fermentation pattern of d-tagatose is affected by adaptation of the microbiota from the gastrointestinal tract of pigs. J Nutr 130:1772–1779

    CAS  Google Scholar 

  12. Bertelsen H, Andersen H, Tvede M (2001) Fermentation of d-tagatose by human intestinal bacteria and dairy lactic acid bacteria. Microb Ecol Health Dis 13:87–95

    Article  CAS  Google Scholar 

  13. Venema K, Vermunt SHF, Brink EJ (2005) d-tagatose increases butyrate production by the colonic microbiota in healthy men and women. Microb Ecol Health Dis 17:47–57

    Article  CAS  Google Scholar 

  14. Levin GV, Zehner LR, Saunders JP, Beadle JR (1995) Sugar substitutes: their energy values, bulk characteristics, and potential health effects. Am J Clin Nutr 62(Suppl):1161S–1168S

    Article  CAS  Google Scholar 

  15. Levin GV (2002) Tagatose, the new GRAS sweetener and health product. J Med Food 5:23–36

    Article  CAS  Google Scholar 

  16. Armstrong LM, Luecke KJ, Bell LN (2009) Consumer evaluation of bakery product flavor as affected by incorporating the prebiotic tagatose. Int J Food Sci Techol 44:815–819

    Article  CAS  Google Scholar 

  17. Cheeseman MA (2011) Agency response letter GRAS Notice No. GRN 000352. U.S. Food and Drug Administration. http://www.fda.gov/food/ingredientspackaginglabeling/gras/noticeinventory/ucm245241.htm. Accessed 28 Mar 2016

  18. Wong DWS (1989) Mechanism and theory in food chemistry. Van Nostrand Reinhold, New York

    Google Scholar 

  19. Robyt JF (1998) Essentials of carbohydrate chemistry. Springer, New York

    Book  Google Scholar 

  20. De Bruijn JM, Kieboom APG, van Bekkum H, van der Poel PW (1986) Reactions of monosaccharides in aqueous alkaline solutions. Sugar Technol Rev 13:21–52

    Google Scholar 

  21. Wolfenden R, Yuan Y (2008) Rates of spontaneous cleavage of glucose, fructose, sucrose, and trehalose in water, and the catalytic proficiencies of invertase and trehalas. J Am Chem Soc 130:7548–7549. Supplemental information available at http://pubs.acs.org/doi/suppl/ 10.1021/ja802206s. Accessed 28 Mar 2016

    Article  CAS  Google Scholar 

  22. Hodge JE (1953) Chemistry of browning reactions in model systems. J Agric Food Chem 1:928–943

    Article  CAS  Google Scholar 

  23. Friedman M (1996) Food browning and its prevention: an overview. J Agric Food Chem 44:631–653

    Article  CAS  Google Scholar 

  24. Dobbs CM, Bell LN (2010) Storage stability of tagatose in buffer solutions of various composition. Food Res Int 43:382–386

    Article  CAS  Google Scholar 

  25. Luecke KJ, Bell LN (2010) Thermal stability of tagatose in solution. J Food Sci 75(4):C346–C351

    Article  CAS  Google Scholar 

  26. Bamford CH, Bamford D, Collins JR (1950) Kinetic studies on carbohydrates in alkaline conditions. II The kinetics of the rearrangements of glucose and fructose in alkaline solution. Proc Royal Soc London Ser A Math Phys Sci 204(1076):85–98

    Article  CAS  Google Scholar 

  27. Luecke KJ (2009) Thermal stability of tagatose in solution. Thesis, Auburn University

    Google Scholar 

  28. Bell LN (2007) Nutraceutical stability concerns and shelf life testing. In: Wildman REC (ed) Handbook of nutraceuticals and functional foods, 2nd edn. CRC, Boca Raton

    Google Scholar 

  29. Grant LD, Bell LN (2012) Physical and chemical stability of tagatose powder. J Food Sci 77(3):C308–C313

    Article  CAS  Google Scholar 

  30. Adhikari B, Howes T, Bhandari BR, Truong V (2001) Stickiness in foods: a review of mechanisms and test methods. Int J Food Prop 4:1–33

    Article  CAS  Google Scholar 

  31. Mauer LJ, Taylor LS (2010) Water-solids interactions: deliquescence. Annu Rev Food Sci Technol 1:41–63

    Article  CAS  Google Scholar 

  32. Bell LN, Luecke KJ (2012) Tagatose stability in milk and diet lemonade. J Food Sci 71(1):H36–H39

    Article  Google Scholar 

  33. Ryu SY, Roh HJ, Noh BS, Kim SY, Oh DK, Lee WJ, Yoon JR, Kim SS (2003) Effects of temperature and pH on the non-enzymatic browning reaction of tagatose-glycine model system. Food Sci Biotechnol 12:675–679

    CAS  Google Scholar 

  34. Bell LN, Wetzel CR (1995) Aspartame degradation in solution as impacted by buffer type and concentration. J Agric Food Chem 43:2608–2612

    Article  CAS  Google Scholar 

  35. Bell LN (1997) Maillard reaction as influenced by buffer type and concentration. Food Chem 59:143–147

    Article  CAS  Google Scholar 

  36. Pachapurkar D, Bell LN (2005) Kinetics of thiamin degradation in solutions under ambient storage conditions. J Food Sci 70:C423–C426

    Article  CAS  Google Scholar 

  37. Dobbs CM (2008) Storage stability of tagatose in buffer solutions of various composition. Thesis, Auburn University

    Google Scholar 

  38. Ajandouz EH, Tchiakpe LS, Ore FD, Benajiba A, Puigserver A (2001) Effects of pH on caramelization and Maillard reaction kinetics in fructose-lysine model systems. J Food Sci 66:926–931

    Article  CAS  Google Scholar 

  39. Kwon SY, Baek HH (2014) Effects of temperature, pH, organic acids, and sulfites on tagatose browning in solutions during processing and storage. Food Sci Biotechnol 23:677–684

    Article  CAS  Google Scholar 

  40. Lindsay RC (2008) Food additives. In: Damodaran S, Parkin KL, Fennema OR (eds) Fennema’s food chemistry, 4th edn. CRC, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard N. Bell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bell, L.N. (2018). Tagatose Stability Issues in Food Systems. In: Mérillon, JM., Ramawat, K. (eds) Sweeteners. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27027-2_32

Download citation

Publish with us

Policies and ethics