Skip to main content

Fine-Tuning Xeon Architecture Vectorization and Parallelization of a Numerical Method for Convection-Diffusion Equations

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 565))

Included in the following conference series:

  • 280 Accesses

Abstract

This work describes the optimization process to improve the performance from a convection-diffusion equation from the HOPMOC method, on the Xeon architecture through the help Intel (r) tools, Vtune Amplifier, Compiler Reports and Intel Advisor. HOPMOC is a finite diffrence method to solve parabolic equations with convective dominance on a cluster with multiple multicore nodes. The method is based both on the modified method of characteristics and the Hopscotch method, it is implemented through an explicit-implicit operator splitting technique. This work studies the vectorization and parallelization version from HOPMOC under a Xeon processor architecture, and shows performance improvements up to 2 times per core, due to optimization via vectorization techniques and a gain up to 30 times on a 54 core environment, due to parallel strategies, compared to the sequential code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kischinhevsky, M.: An Operator Splitting for Optimal Message-passing Computation of Parabolic Equation with Hyperbolic Dominance. SIAM Annual Meeting, Missouri (1996)

    Google Scholar 

  2. Boonkkamp, J.H.M.T.J., Verwer, J.G.: On the odd-even hopscotch scheme for the numerical integration of time-dependent partial differential equations. Appl. Num. Math. 3(1), 183–193 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hansen, J.P., Matthey, T., Sørevik, T.: A parallel split operator method for the time dependent Schrödinger equation. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003. LNCS, vol. 2840, pp. 503–510. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Yanenko, N.N.: The Method of Fractional Steps. Springer, New York (1970)

    Google Scholar 

  5. Li, D., Zhou, Z., Wang, Q.: A hybrid MPI/OpenMP based on DDM for large-scale partial differential equations. In: IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, Liverpool, pp. 1839–1843 (2012)

    Google Scholar 

  6. Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., Chapman, B.: High performance computing using MPI and OpenMP on multi-core parallel systems. Parallel Comput. 37(9), 562–575 (2011)

    Article  Google Scholar 

  7. Mininni, P.D., Rosenberg, D., Reddy, R., Poquet, A.: A hybrid MPI-OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Comput. 37, 316–326 (2011)

    Article  Google Scholar 

  8. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors: A Hands-on Approach. Elsevier Inc., Philadelphia (2010)

    Google Scholar 

  9. Kischinhevsky, M.: A spatially decoupled alternating direction procedure for convection-diffusion equations. In: Proceedings of the XXth CILAMCE-Iberian Latin American Congress on Numerical Methods in Engineearing (1999)

    Google Scholar 

  10. Oliveira, S., Gonzaga, S.L., Kischinhevsky, M.: Convergence analysis of the HOPMOC method. Int. J. Comput. Math. 86, 1375–1393 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cabral, F.L.: HOPMOC methods to solve convection-diffusion equations and its parallel implementation (in Portuguese). Master thesis, Instituto de Computação/Universidade Federal Fluminense, Brasil (2001)

    Google Scholar 

  12. Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-Value Problems Interscience. Interscience, New York (1967)

    MATH  Google Scholar 

  13. Harten, A.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21, 1–23 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rabeinsefner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming on clusters of molti-core SMP nodes. In: 2009 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing, pp. 427–436 (2009)

    Google Scholar 

  15. Cluster OpemMP for Intel Compilers. http://software.intel.com/en-us/articles/cluster-openmp-for-intel-compilers

  16. Klemm, M., Duran, A., Tian, X., Saito, H., Caballero, D., Martorell, X.: Extending OpenMP* with vector constructs for modern multicore SIMD architectures. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 59–72. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Cabral, F.L., Osthoff, C., Kischinhevsky, M., Brandão. D.: Hybrid MPI/OpenMP/OpenACC Implementations for the Solution of Convection-Diffusion Equations with the HOPMOC Method. In: Proceedings of XXIV International Conference on Computational Science and Its Applications (2014)

    Google Scholar 

Download references

Acknowledgments

This project was partially supported by cooperation agreement between LNCC and Intel Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico Luís Cabral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cabral, F.L., Osthoff, C., Brandão, D., Kischinhevsky, M. (2015). Fine-Tuning Xeon Architecture Vectorization and Parallelization of a Numerical Method for Convection-Diffusion Equations. In: Osthoff, C., Navaux, P., Barrios Hernandez, C., Silva Dias, P. (eds) High Performance Computing. CARLA 2015. Communications in Computer and Information Science, vol 565. Springer, Cham. https://doi.org/10.1007/978-3-319-26928-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26928-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26927-6

  • Online ISBN: 978-3-319-26928-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics