Skip to main content

Future Perspectives

  • Chapter
  • First Online:
Myeloid-Derived Suppressor Cells and Cancer

Part of the book series: SpringerBriefs in Immunology ((BRIEFSIMMUN))

  • 645 Accesses

Abstract

The participation of myeloid cells in tumor progression and metastasis has been known for a long time. The role of M2 macrophages, tolerogenic DCs, and N2 neutrophils in tumor immunology has been researched extensively. About 10 years ago, a “re-discovered” new myeloid player named myeloid-derived suppressor cell (MDSC) was put on the spot. However, its precise origin and nature was a subject of some scientific debate. MDSCs turned out to be highly heterogeneous, especially in humans, and exhibiting cancer type-specific properties and characteristics. And despite all recent advances in MDSC research, many questions remain unanswered. In this chapter we will summarize the main subjects addressed in this book and point out the questions that remain unanswered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev 13(10):739–752

    Article  CAS  Google Scholar 

  2. Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67 (1):425; author reply 426. doi:67/1/425 [pii] 10.1158/0008-5472.CAN-06-3037

  3. Fridlender ZG, Sun J, Mishalian I, Singhal S, Cheng G, Kapoor V, Hornq W, Fridlender G, Bayuh R, Worthen GS, Albelda SM (2012) Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myloid-derived suppressor cells and normal neutrophils. PLoS ONE 7(2):e31524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91(1):167–181. doi:10.1189/jlb.0311177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koffel R, Meshcheryakova A, Warszawska J, Henning A, Wagner K, Jorgl A, Gubi D, Moser D, Hladik A, Hoffmann U, Fischer MB, van der Berg W, Koenders M, Scheinecker C, Gesslbauer B, Knapp S, Strobl H (2014) Monocytic cell differentiation from band-stage neutrophils under inflammatory conditions via MKK6 activation. Blood 124(17):2713–2724

    Article  PubMed  PubMed Central  Google Scholar 

  6. Youn JI, Kumar V, Collazo M, Nefedova Y, Condamine T, Cheng P, Villagra A, Antonia S, McCaffrey JC, Fishman M, Sarnaik A, Horna P, Sotomayor E, Gabrilovich DI (2013) Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 14(3):211–220. doi:10.1038/ni.2526ni 2526[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dufait I, Schwarze JK, Liechtenstein T, Leonard W, Jiang H, Law K, Verovski V, Escors D, De Ridder M, Breckpot K (2015) Ex vivo generation of myeloid-derived suppressor cells that model the tumor immunosuppressive environment in colorectal cancer. Oncotarget 6(14):12369–12382

    Article  PubMed  PubMed Central  Google Scholar 

  8. Escors D (2014) Tumour immunogenicity, antigen presentation and immunological barriers in cancer immunotherapy. New J Sci 2014. doi:10.1155/2014/734515 734515[pii]

  9. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22(4):275–281. doi:10.1016/j.semcancer.2012.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bodogai M, Moritoh K, Lee-Chang C, Hollander CM, Sherman-Baust CA, Wersto RP, Araki Y, Miyoshi I, Yang L, Trinchieri G, Biragyn A (2015) Immune suppressive and pro-metastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B cells. Cancer Res. doi:10.1158/0008-5472.CAN-14-3077

    PubMed  Google Scholar 

  11. Escors D, Liechtenstein T, Perez-Janices N, Schwarze J, Dufait I, Goyvaerts C, Lanna A, Arce F, Blanco-Luquin I, Kochan G, Guerrero-Setas D, Breckpot K (2013) Assessing T-cell responses in anticancer immunohterapy: dendritic cells or myeloid-derived suppressor cells? Oncoimmunology 12(10):e26148

    Article  Google Scholar 

  12. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liechtenstein T, Perez-Janices N, Blanco-Luquin I, Schwarze J, Dufait I, Lanna A, De Ridder M, Guerrero-Setas D, Breckpot K, Escors D (2014) Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology 3:e29178

    Article  Google Scholar 

  14. Liechtenstein T, Perez-Janices N, Gato M, Caliendo F, Kochan G, Blanco-Luquin I, Van der Jeught K, Arce F, Guerrero-Setas D, Fernandez-Irigoyen J, Santamaria E, Breckpot K, Escors D (2014) A highly efficient tumor-infiltrating MDSC differentiation system for discovery of anti-neoplastic targets, which circumvents the need for tumor establishment in mice. Oncotarget 5(17):7843–7857

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gato-Cañas M, Martinez de Morentin X, Blanco-Luquin I, Fernandez-Irigoyen J, Zudaire I, Liechtenstein T, Arasanz H, Lozano T, Casares N, Knapp S, Chaikuad A, Guerrero-Setas D, Escors D, Kochan G, Santamaria E (2015) A core of kinase-regulated interactomes defines the neoplastic MDSC lineage. Oncotarget In press

    Google Scholar 

  16. Aliper AM, Frieden-Korovkina VP, Buzdin A, Roumiantsev SA, Zhavoronkov A (2014) Interactome analysis of myeloid-derived suppressor cells in murine models of colon and breast cancer. Oncotarget 5(22):11345–11353

    Article  PubMed  PubMed Central  Google Scholar 

  17. Van der Jeught K, Joe PT, Bialkowski L, Heirman C, Daszkiewicz L, Liechtenstein T, Escors D, Thielemans K, Breckpot K (2014) Intratumoral administration of mRNA encoding a fusokine consisting of IFN-beta and the ectodomain of the TGF-beta receptor II potentiates antitumor immunity. Oncotarget 5(20):10100–10113

    Article  PubMed  PubMed Central  Google Scholar 

  18. Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S, Bronte V (2010) Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 22(2):238–244. doi:10.1016/j.coi.2010.01.021 S0952-7915(10)00022-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Damuzzo V, Pinton L, Desantis G, Solito S, Marigo I, Bronte V, Mandruzzato S (2015) Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry Part B, Clinical cytometry 88(2):77–91. doi:10.1002/cyto.b.21206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, Bronte V (2014) Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci 1319:47–65. doi:10.1111/nyas.12469

    Article  CAS  PubMed  Google Scholar 

  21. Nagaraj S, Collazo M, Corzo CA, Youn JI, Ortiz M, Quiceno D, Gabrilovich DI (2009) Regulatory myeloid suppressor cells in health and disease. Cancer Res 69(19):7503–7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sevko A, Michels T, Vrohlings M, Umansky L, Beckhove P, Kato M, Shurin GV, Shurin MR, Umansky V (2013) Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J Immunol 190(5):2464–2471. doi:10.4049/jimmunol.1202781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Emeagi PU, Maenhout S, Dang N, Heirman C, Thielemans K, Breckpot K (2013) Downregulation of Stat3 in melanoma: reprogramming the immune microenvironment as an anticancer therapeutic strategy. Gene Ther. 20(11):1085–1092. doi:10.1038/gt.2013.35 gt201335 [pii]

    Google Scholar 

  24. Waight JD, Netherby C, Hensen ML, Miller A, Hu Q, Liu S, Bogner PN, Farren MR, Lee KP, Liu K, Abrams SI (2013) Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J Clin Invest 123(10):4464–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, Sawa S, Kamimura D, Ueda N, Iwakura Y, Ishihara K, Murakami M, Hirano T (2004) IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol 173(6):3844–3854

    Article  CAS  PubMed  Google Scholar 

  26. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, Jove R, Gabrilovich D (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172(1):464–474

    Article  CAS  PubMed  Google Scholar 

  27. Niemand C, Nimmesgern A, Haan S, Fischer P, Schaper F, Rossaint R, Heinrich PC, Muller-Newen G (2003) Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3. J Immunol 170(6):3263–3272

    Article  CAS  PubMed  Google Scholar 

  28. O’Farrell AM, Liu Y, Moore KW, Mui AL (1998) IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J 17(4):1006–1018. doi:10.1093/emboj/17.4.1006

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang J, Liao D, Chen C, Liu Y, Chuang TH, Xiang R, Markowitz D, Reisfeld RA, Luo Y (2013) Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem cells (Dayton, Ohio) 31(2):248–258. doi:10.1002/stem.1281

    Google Scholar 

  30. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10(1):48–54

    Article  PubMed  Google Scholar 

  31. Arce F, Kochan G, Breckpot K, Stephenson H, Escors D (2012) Selective Activation of Intracellular Signalling Pathways In Dendritic Cells For Cancer Immunotherapy. Anti-Cancer Agents Med Chem 1:29–39

    Article  Google Scholar 

  32. Samatar AA, Poulikakos PI (2014) Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discovery 13(12):928–942. doi:10.1038/nrd4281

    Article  CAS  PubMed  Google Scholar 

  33. Karwacz K, Bricogne C, Macdonald D, Arce F, Bennett CL, Collins M, Escors D (2011) PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8(+) T cells. EMBO Mol Med 3(10):581–592. doi:10.1002/emmm.201100165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arce F, Breckpot K, Stephenson H, Karwacz K, Ehrenstein MR, Collins M, Escors D (2011) Selective ERK activation differentiates mouse and human tolerogenic dendritic cells, expands antigen-specific regulatory T cells, and suppresses experimental inflammatory arthritis. Arthritis Rheum 63:84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Escors D, Lopes L, Lin R, Hiscott J, Akira S, Davis RJ, Collins MK (2008) Targeting dendritic cell signalling to regulate the response to immunisation. Blood 111(6):3050–3061. doi:10.1182/blood-2007-11-122408 blood-2007-11-122408 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. Luan Y, Mosheir E, Menon MC, Wilson D, Woytovich C, Ochando J, Murphy B (2013) Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4(+) Foxp3(+) Treg expansion. Am J Transplant 13(12):3123–3131. doi:10.1111/ajt.12461

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto T, Hattori M, Yoshida T (2007) Induction of T-cell activation or anergy determined by the combination of intensity and duration of T-cell receptor stimulation, and sequential induction in an individual cell. Immunology 121(3):383–391. doi:10.1111/j.1365-2567.2007.02586.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C, O’Day SJ, Hoos A, Humphrey R, Berman DM, Lonberg N, Korman AJ (2013) Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci 1291(1):1–13. doi:10.1111/nyas.12180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dilek N, Vuillefroy de Silly R, Blancho G, Vanhove B (2012) Myeloid-derived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance. Front Immunol 3:208. doi:10.3389/fimmu.2012.00208

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maenhout SK, Van Lint S, Emeagi PU, Thielemans K, Aerts JL (2014) Enhanced suppressive capacity of tumor-infiltrating myeloid-derived suppressor cells compared to their peripheral counterparts. Int J Cancer 134(5):1077–1090. doi:10.1002/ijc.28449

    Article  CAS  PubMed  Google Scholar 

  41. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Karwacz K, Arce F, Bricogne C, Kochan G, Escors D (2012) PD-L1 co-stimulation, ligand-induced TCR down-modulation and anti-tumor immunotherapy. Oncoimmunology 1(1):86–88

    Article  PubMed  PubMed Central  Google Scholar 

  44. Escors D, Bricogne C, Arce F, Kochan G, Karwacz K (2012) On the mechanism of T cell receptor down-modulation and its physiological significance. J biosci med 1(1). 2011.5 [pii]

    Google Scholar 

  45. Liechtenstein T, Dufait I, Bricogne C, lanna A, Pen J, Breckpot K, Escors D (2012) PD-L1/PD-1 co-stimulation, a brake for T cell activation and a T cell differentiation signal. J Clin Cell Immunol S12(006):6. doi:10.4172/2155-9899.S12-006

    Google Scholar 

  46. Bricogne C, Laranga R, Padella A, Dufait I, Liechtenstein T, Breckpot K, Kochan G, Escors D (2012) Critical Mass Hypothesis of T-Cell Responses and its Application for the Treatment of T-Cell Lymphoma. In: Harvey WK, Jacobs RM (eds) Hodgkin’s and T-cell lymphoma: Diagnosis. Nova Publishers, Treatment Options and Prognosis

    Google Scholar 

  47. Pen JJ, Keersmaecker BD, Heirman C, Corthals J, Liechtenstein T, Escors D, Thielemans K, Breckpot K (2013) Interference with PD-L1/PD-1 co-stimulation during antigen presentation enhances the multifunctionality of antigen-specific T cells. Gene Ther 21(3):262–271

    Article  Google Scholar 

  48. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790. doi:10.1084/jem.20131916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev 7(2):95–106. doi:10.1038/nrc2051

    Article  CAS  Google Scholar 

  50. Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242. doi:10.1038/nri3405

    Article  PubMed  PubMed Central  Google Scholar 

  51. Qin H, Lerman B, Sakamaki I, Wei G, Cha SC, Rao SS, Qian J, Hailemichael Y, Nurieva R, Dwyer KC, Roth J, Yi Q, Overwijk WW, Kwak LW (2014) Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice. Nat Med 20(6):676–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Srivastava MK, Zhu L, Harris-White M, Kar UK, Huang M, Johnson MF, Lee JM, Elashoff D, Strieter R, Dubinett S, Sharma S (2012) Myeloid suppressor cell depletion augments antitumor activity in lung cancer. PLoS ONE 7(7):e40677. doi:10.1371/journal.pone.0040677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Steding CE, Wu ST, Zhang Y, Jeng MH, Elzey BD, Kao C (2011) The role of interleukin-12 on modulating myeloid-derived suppressor cells, increasing overall survival and reducing metastasis. Immunology 133(2):221–238. doi:10.1111/j.1365-2567.2011.03429.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kerkar SP, Goldszmid RS, Muranski P, Chinnasamy D, Yu Z, Reger RN, Leonardi AJ, Morgan RA, Wang E, Marincola FM, Trinchieri G, Rosenberg SA, Restifo NP (2011) IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest 121(12):4746–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kerkar SP, Leonardi AJ, van Panhuys N, Zhang L, Yu Z, Crompton JG, Pan JH, Palmer DC, Morgan RA, Rosenberg SA, Restifo NP (2013) Collapse of the tumor stroma is triggered by IL-12 induction of Fas. Mol Ther 21(7):1369–1377. doi:10.1038/mt.2013.58 mt201358 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

David Escors is funded by a Miguel Servet Fellowship (CP12/03114), a FIS project grant (PI14/00579) from the Instituto de Salud Carlos III, Spain, the Refbio transpyrenaic collaborative project grants (NTBM), a Sandra Ibarra Foundation grant, Gobierno de Navarra Grant (BMED 033-2014), and a Gobierno Vasco BioEf project grant (BIO13/CI/014). Grazyna Kochan is funded by a Caixa Bank Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Escors .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Escors, D., Kochan, G. (2016). Future Perspectives. In: Myeloid-Derived Suppressor Cells and Cancer. SpringerBriefs in Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-26821-7_7

Download citation

Publish with us

Policies and ethics