Skip to main content

Mechanistic Description of Membrane Electropermeabilization

  • Living reference work entry
  • First Online:
Handbook of Electroporation
  • 168 Accesses

Abstract

Classical cell membrane electropermeabilization of cell membrane is the result of the delivery of electric field pulses on cells. The electric field pulse lasts from submicro- to several milliseconds. The electric field intensity is large enough to induce a dramatic structural local alteration of the cell membrane organization. This results in an enhanced permeabilization of the target cell membrane for molecules otherwise poorly transportable. This structural alteration is indeed a complex process, and its molecular characterization remains an intense field of investigations. The new transient organization of the cell membrane supports a massive transport due to electrophoretic forces and diffusion-driven gradients.

This chapter describes the fast events inducing electropermeabilization or the immediate consequences of the field-induced alteration of the membrane and cellular organization. The methods suited to monitor these fast events are critically described as they are key factors in the accuracy of the informations. Three steps are present in cell membrane electropermeabilization: trigger, expansion, and stabilization. The experimental results are discussed in terms of structural information on the new transient membrane organization. Most informations are related to the massive enhanced molecular transport across the membrane and its modulation by the electric field pulse delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Canatella PJ, Karr JF, Petros JA, Prausnitz MR (2001) Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys J 80(2):755–764

    Article  Google Scholar 

  • Chen W, Lee RC (1994) Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse. Biophys J 67(2):603–612

    Article  Google Scholar 

  • Chopinet L, Roduit C, Rols MP, Dague E (2013) Destabilization induced by electropermeabilization analyzed by atomic force microscopy. Biochim Biophys Acta 1828(9):2223–2229. doi:10.1016/j.bbamem.2013.05.035

    Article  Google Scholar 

  • Deng J, Schoenbach KH, Buescher ES, Hair PS, Fox PM, Beebe SJ (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84(4):2709–2714

    Article  Google Scholar 

  • Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach H, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90(10):3608–3615. doi:10.1529/biophysj.105.072777

    Article  Google Scholar 

  • Gass GV, Chernomordik LV (1990) Reversible large-scale deformations in the membranes of electrically-treated cells: electroinduced bleb formation. Biochim Biophys Acta 1023(1):1–11

    Article  Google Scholar 

  • Hibino M, Shigemori M, Itoh H, Nagayama K, Kinosita K Jr (1991) Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys J 59(1):209–220

    Article  Google Scholar 

  • Hibino M, Itoh H, Kinosita K Jr (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J 64(6):1789–1800

    Article  Google Scholar 

  • Ibey BL, Ullery JC, Pakhomova ON, Roth CC, Semenov I, Beier HT, Tarango M, Xiao S, Schoenbach KH, Pakhomov AG (2014) Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses. Biochem Biophys Res Commun 443(2):568–573. doi:10.1016/j.bbrc.2013.12.004

    Article  Google Scholar 

  • Kanduser M, Sentjurc M, Miklavcic D (2006) Cell membrane fluidity related to electroporation and resealing. Eur Biophys J 35(3):196–204

    Article  Google Scholar 

  • Kanduser M, Sentjurc M, Miklavcic D (2008) The temperature effect during pulse application on cell membrane fluidity and permeabilization. Bioelectrochemistry 74(1):52–57. doi:10.1016/j.bioelechem.2008.04.012

    Article  Google Scholar 

  • Kinosita K Jr, Tsong TY (1977) Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta 471:227–242

    Article  Google Scholar 

  • Kinosita K Jr, Tsong TY (1979) Voltage-induced conductance in human erythrocyte membranes. Biochim Biophys Acta 554:479–497

    Article  Google Scholar 

  • Leikin S, Parsegian VA, Rau DC, Rand RP (1993) Hydration forces. Annu Rev Phys Chem 44:369–395

    Article  Google Scholar 

  • Moen EK, Ibey BL, Beier HT (2014) Detecting subtle plasma membrane perturbation in living cells using second harmonic generation imaging. Biophys J 106(10):L37–L40. doi:10.1016/j.bpj.2014.04.008

    Article  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10(3):279–290

    Article  Google Scholar 

  • Paganin-Gioanni A, Bellard E, Escoffre JM, Rols MP, Teissié J, Golzio M (2011) Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc Natl Acad Sci USA 108(26):10443–10447. doi:10.1073/pnas.1103519108

    Article  Google Scholar 

  • Pakhomov AG, Xiao S, Pakhomova ON, Semenov I, Kuipers MA, Ibey BL (2014) Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling. Bioelectrochemistry 100:88–95. doi:10.1016/j.bioelechem.2014.01.004

    Article  Google Scholar 

  • Prausnitz MR, Corbett JD, Gimm JA, Golan DE, Langer R, Weaver JC (1995) Millisecond measurement of transport during and after an electroporation pulse. Biophys J 68(5):1864–1870

    Article  Google Scholar 

  • Pucihar G, Kotnik T, Miklavcic D, Teissié J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95(6):2837–2848. doi:10.1529/biophysj.108.135541

    Article  Google Scholar 

  • Rems L, Miklavcic D (2016) Tutorial: electroporation of cells in complex materials and tissue. J Appl Phys 119:201101. doi:10.1063/1.4949264

    Article  Google Scholar 

  • Silve A, Leray I, Poignard C, Mir LM (2016) Impact of external medium conductivity on cell membrane electropermeabilization by microsecond and nanosecond electric pulses. Sci Rep 6:19957. doi:10.1038/srep19957

    Article  Google Scholar 

  • Son RS, Smith KC, Gowrishankar TR, Vernier PT, Weaver JC (2014) Basic features of a cell electroporation model: illustrative behavior for two very different pulses. J Membr Biol 247(12):1209–1228. doi:10.1007/s00232-014-9699-z

    Article  Google Scholar 

  • Sowers AE (1986) A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses. J Cell Biol 102(4):1358–1362

    Article  Google Scholar 

  • Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta 1724(3):270–280

    Article  Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1947) Dielectric breakdown of cell membranes. Biophys J 14:881–899

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Teissie .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Teissie, J. (2017). Mechanistic Description of Membrane Electropermeabilization. In: Miklavcic, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-26779-1_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26779-1_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26779-1

  • Online ISBN: 978-3-319-26779-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics