Skip to main content

Chemical Sensors and Information Fusion in Physarum

  • Chapter
  • First Online:
Advances in Physarum Machines

Abstract

We show how the slime mould can be used as a chemical sensor and investigate how the organism combines different sensory information. We have produced a biosensor using protoplasmic tubes of Physarum which is capable of detecting various biologically active chemicals in the local environment; this progress is akin to developing a biological nose using the organism’s natural sensing ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acker, H.: Cellular oxygen sensors. Ann. N. Y. Acad. Sci. 718, 3–12 (1994)

    Article  Google Scholar 

  2. Adamatzky, A.: Routing Physarum with repellents. Eur. Phys. J. E, Soft Matter 31(4), 403–410 (2010)

    Article  Google Scholar 

  3. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific Publishing Co., Pte. Ltd., London (2010)

    Google Scholar 

  4. Adamatzky, A.: Slime mould tactile sensor. Sens. Actuators B: Chem. 188, 38–44 (2013)

    Article  Google Scholar 

  5. Adamatzky, A.: Towards slime mould colour sensor : recognition of colours by Physarum polycephalum. Org. Electron. 14(12), 3147–3500 (2013)

    Article  Google Scholar 

  6. Adamatzky, A.: Tactile bristle sensors made with slime mold. IEEE Sens. J. 14(2), 324–332 (2014)

    Article  Google Scholar 

  7. Adamatzky, A., Jones, J.: On electrical correlates of Physarum polycephalum spatial activity: can we see Physarum machine in the dark? Biophys. Rev. Lett. 06(01n02), 29–57 (2011)

    Google Scholar 

  8. Adamatzky, A., Erokhin, V., Grube, M., Schubert, T., Schumann, A.: Physarum chip project : growing computers from slime mould. Int. J. Unconv. Comput. 8, 319–323 (2012)

    Google Scholar 

  9. Baronian, K.H.R.: The use of yeast and moulds as sensing elements in biosensors. Biosens. Bioelectron. 19(9), 953–962 (2004)

    Article  Google Scholar 

  10. Bjerketorp, J., Håkansson, S., Belkin, S., Jansson, J.K.: Advances in preservation methods: keeping biosensor microorganisms alive and active. Curr. Opin. Biotechnol. 17(1), 43–9 (2006)

    Google Scholar 

  11. Bousse, L.: Whole cell biosensors. Sens. Actuators B: Chem. 34(1–3), 270–275 (1996)

    Article  Google Scholar 

  12. Carlilie, M.J.: Nutrition and chemotaxis in the myxomycete Physarum polycephalum: the effect of carbohydrates on the plasmodium. J. Gen. Microbiol. 63, 221–226 (1970)

    Article  Google Scholar 

  13. De Lacy Costello, B.P.J., Adamatzky, A.I.: Assessing the chemotaxis behavior of Physarum Polycephalum to a range of simple volatile organic chemicals. Commun. Integr. Biol. 6(5), e25030 (2013)

    Google Scholar 

  14. Daniel, J.W., Rusch, H.P.: Method for inducing sporulation of pure cultures of the myxomycete Physarum polycephalum. J. Bacteriol. 83, 234–240 (1962)

    Google Scholar 

  15. Durham, A.C.H., Ridgway, E.B.: Control of chemotaxis in Physarum polycephalum. J. Cell Biol. 69, 218–223 (1976)

    Article  Google Scholar 

  16. Durham, A.C.H.: A unified theory of the control of actin and myosin in nonmuscle movements. Cell 2(3), 123–135 (1974)

    Article  Google Scholar 

  17. Dussutour, A., Latty, T., Beekman, M., Simpson, S.J.: Amoeboid organism solves complex nutritional challenges. Proc. Nat. Acad. Sci. U.S.A. 107(10), 4607–4611 (2010)

    Article  Google Scholar 

  18. Heilbrunn, L.V.: The electric charge of protoplasmic colloids. Physiol. Zool. 12(1), 1–12 (1939)

    Article  Google Scholar 

  19. Hulanicki, A., Glab, S., Ingman, F.: Chemical sensors: definitions and classification. Pure Appl. Chem. 63(9), 1247–1250 (1991)

    Article  Google Scholar 

  20. Kakiuchi, Y., Takahashi, T., Murakami, A., Ueda, T.: Light irradiation induces fragmentation of the plasmodium, a novel photomorphogenesis in the true slime mold Physarum polycephalum: action spectra and evidence for involvement of the phytochrome. Photochem. Photobiol. 73(3), 324–329 (2001)

    Article  Google Scholar 

  21. Kamiya, N.: Protoplasmic Streaming. Springer, Vienna (1959)

    Book  Google Scholar 

  22. Kamiya, N.: Physical and chemical basis of cyptoplasmic streaming. Annu. Rev. Plant Physiol. 32, 205–236 (1981)

    Article  Google Scholar 

  23. Kishimoto, U.: Rhythmicity in the protoplasmic streaming of a slime mold, Physarum polycephalum. J. Gen. Physiol. 41(6), 1205–1222 (1958)

    Article  Google Scholar 

  24. Knowles, D.J., Carlile, M.J.: The chemotactic response of plasmodia of the myxomycete Physarum polycephalum to sugars and related compounds. J. Gen. Microbiol. 108(1), 17–25 (1978)

    Article  Google Scholar 

  25. Köster, M., Gliesche, C.G., Wardenga, R.: Microbiosensors for measurement of microbially available dissolved organic carbon: sensor characteristics and preliminary environmental application. Appl. Environ. Microbiol. 72(11), 7063–7073 (2006)

    Article  Google Scholar 

  26. Liu, Q., Ye, W., Yu, H., Hu, N., Du, L., Wang, P., Yang, M.: Olfactory mucosa tissue-based biosensor: a bioelectronic nose with receptor cells in intact olfactory epithelium. Sens. Actuators B: Chem. 146(2), 527–533 (2010)

    Article  Google Scholar 

  27. Liu, S., Cheng, C., Lin, Z., Zhang, J., Li, M., Zhou, Z., Tian, S., Xing, M.: Transient expression in microplasmodia of Physarum polycephalum. Chin. J. Biotechnol. 25(6), 854–862 (2009)

    Google Scholar 

  28. Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T., Tero, A., Kobayashi, R., Showalter, K.: Minimum-risk path finding by an adaptive amoebal network. Phys. Rev. Lett. 99(6), 068104 (2007)

    Google Scholar 

  29. Nakagaki, T., Saigusa, T., Tero, A., Kobayashi, R.: Effects of amount of food on path selection in the transport network of an amoeboid organism. In: Topological Aspects of Critical Systems and Networks, pp. 94–100 (2007)

    Google Scholar 

  30. Nakagaki, T., Ueda, T.: Phase switching of oscillatory contraction in relation to the regulation of amoeboid behavior by the plasmodium of Physarum polycephalum. J. Theor. Biol. 179(3), 261–267 (1996)

    Article  Google Scholar 

  31. Nakagaki, T., Yamada, H., Ueda, T.: Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. Biophys. Chem. 82(1), 23–28 (1999)

    Article  Google Scholar 

  32. Nakagaki, T.: Smart behavior of true slime mold in a labyrinth. Res. Microbiol. 152(9), 767–770 (2001)

    Article  Google Scholar 

  33. Parry, J.M.: Use of tests in yeasts and fungi in the detection and evaluation of carcinogens. IARC Sci. Publ. 146, 471–485 (1999)

    Google Scholar 

  34. Racek, J.: A yeast biosensor for glucose determination. Appl. Microbiol. Biotechnol. 34(4), 473–477 (1991)

    Article  Google Scholar 

  35. Rui, Q., Komori, K., Tian, Y., Liu, H., Luo, Y., Sakai, Y.: Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets. Anal. Chim. Acta 670(1–2), 57–62 (2010)

    Article  Google Scholar 

  36. Sachsenmaier, W., Blessing, J., Brauser, B., Hansen, K.: Protoplasmic streaming in Physarum polycephalum. Protoplasma 77(4), 381–396 (1973)

    Article  Google Scholar 

  37. Safronova, O.G., Khichenko, V.I., Shtark, M.B.: Possible clinical applications of tissue and cell biosensors. Biomed. Eng. 29(4), 214–222 (1995)

    Article  Google Scholar 

  38. Schreckenbach, T., Walckhoff, B., Verfuerth, C.: Blue-light receptor in a white mutant of Physarum polycephalum mediates inhibition of spherulation and regulation of glucose metabolism. Proc. Nat. Acad. Sci. U.S.A. 78(2), 1009–1013 (1981)

    Article  Google Scholar 

  39. Smith, D.A., Saldana, R.: Model of the Ca2+ oscillator for shuttle streaming in Physarum polycephalum. Biophys. J. 61(2), 368–380 (1992)

    Article  Google Scholar 

  40. Takahashi, K., Uchida, G., Hu, Z.S., Tsuchiya, Y.: Entrainment of the self-sustained oscillation in a Physarum polycephalum strand as a one-dimensionally coupled oscillator system. J. Theor. Biol. 184(2), 105–110 (1997)

    Article  Google Scholar 

  41. Tauc, L.: Phenomenes bioelectriques observes dans le plasmode d’un myxomycete (Physarum polycephalum). J. Physiol. (Paris) 46, 659–669 (1954)

    Google Scholar 

  42. Ueda, T., Terayama, K., Kurihara, K., Kobatake, Y.: Threshold phenomena in chemoreception and taxis in slime mold Physarum polycephalum. J. Gen. Physiol. 65(2), 223–234 (1975)

    Article  Google Scholar 

  43. Voiculescu, I., Li, F., Liu, F., Zhang, X., Cancel, L.M., Tarbell, J.M., Khademhosseini, A.: Study of long-term viability of endothelial cells for lab-on-a-chip devices. Sens. Actuators B: Chem. 182, 696–705 (2013)

    Article  Google Scholar 

  44. Wang, P., Xu, G., Qin, L., Xu, Y., Li, Y., Li, R.: Cell-based biosensors and its application in biomedicine. Sens. Actuators B: Chem. 108(1–2), 576–584 (2005)

    Article  Google Scholar 

  45. Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzky, A.: Towards slime mould chemical sensor: mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum. Sens. Actuators B: Chem. 191, 844–853 (2014)

    Article  Google Scholar 

  46. Wohlfarth-Bottermann, K.E., Block, I.: The pathway of photosensory transduction in Physarum polycephalum. Cell Biol. Int. Rep. 5(4), 365–373 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. H. Whiting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Whiting, J.G.H., De Lacy Costello, B., Adamatzky, A. (2016). Chemical Sensors and Information Fusion in Physarum. In: Adamatzky, A. (eds) Advances in Physarum Machines. Emergence, Complexity and Computation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-26662-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26662-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26661-9

  • Online ISBN: 978-3-319-26662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics