Skip to main content

Frequency Decomposition Based Gene Clustering

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9490))

Included in the following conference series:

Abstract

Gene expressions have been commonly applied to understand the inherent underlying mechanism of known biological processes. Although the microarray gene expressions usually appear aperiodic, with proper signal processing techniques, its periodic components can be easily obtained. Thus, if expressions of interconnected (regulatory and regulated) genes are decomposed, at least one common frequency component will appear in these genes. Exploiting this novel concept, we propose a frequency decomposition approach for gene clustering to better understand the gene interconnection topology. This method, based on Hilbert Huang Transform (HHT) enables us to segregate every periodic component of the gene expressions. Next, a multilevel clustering is performed based on these frequency components. Unlike existing clustering algorithms, the proposed method assimilates a meaningful knowledge of the gene interactions topology. The information related to underlying gene interactions is vital and can prove useful in many existing evolutionary optimisation algorithms for genetic network reconstruction. We validate the entire approach by its application to a 15-gene synthetic network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, A.A.: Classification and alignment of gene-expression time-series data. Ph.D. thesis, UNIVERSITY OF WISCONSIN-MADISON (2009)

    Google Scholar 

  2. Aach, J., Church, G.M.: Aligning gene expression time series with time warping algorithms. Bioinformatics 17(6), 495–508 (2001)

    Article  Google Scholar 

  3. Bar-Joseph, Z., Gerber, G.K., Gifford, D.K., Jaakkola, T.S., Simon, I.: Continuous representations of time-series gene expression data. J. Comput. Biol. 10(3–4), 341–356 (2003)

    Article  Google Scholar 

  4. Ernst, J., Nau, G.J., Bar-Joseph, Z.: Clustering short time series gene expression data. Bioinformatics 21(suppl 1), i159–i168 (2005)

    Article  Google Scholar 

  5. Déjean, S., Martin, P.G., Baccini, A., Besse, P.: Clustering time-series gene expression data using smoothing spline derivatives. EURASIP J. Bioinform. Syst. Biol. 2007(1), 70561 (2007)

    Google Scholar 

  6. Ooi, C.H., Chetty, M., Teng, S.W.: Differential prioritization in feature selection and classifier aggregation for multiclass microarray datasets. Data Min. Knowl. Disc. 14(3), 329–366 (2007)

    Article  MathSciNet  Google Scholar 

  7. Feng, J., Barbano, P.E., Mishra, B.: Time-frequency feature detection for time-course microarray data. In: Proceedings of the 2004 ACM symposium on Applied computing, pp. 128–132. ACM (2004)

    Google Scholar 

  8. Du, L., Wu, S., Liew, A.W.-C., Smith, D.K.: Spectral analysis of microarray gene expression time series data of plasmodium falciparum. Int. J. Bioinform. Res. Appl. 4(3), 337–349 (2008)

    Article  Google Scholar 

  9. Rosa, B.A., Jiao, Y., Oh, S., Montgomery, B.L., Qin, W., Chen, J.: Frequency-based time-series gene expression recomposition using priism. BMC Syst. Biol. 6(1), 69 (2012)

    Article  Google Scholar 

  10. Sussillo, D., Kundaje, A., Anastassiou, D.: Spectrogram analysis of genomes. EURASIP J. Appl. Sig. Process. 2004, 29–42 (2004)

    Article  MATH  Google Scholar 

  11. Dodin, G., Vandergheynst, P., Levoir, P., Cordier, C., Marcourt, L.: Fourier and wavelet transform analysis, a tool for visualizing regular patterns in dna sequences. J. Theor. Biol. 206(3), 323–326 (2000)

    Article  Google Scholar 

  12. Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20(16), 2493–2503 (2004)

    Article  Google Scholar 

  13. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903–995 (1998)

    Google Scholar 

  14. Huang, N.E., Shen, S.S.: Hilbert-Huang Transform and Its Applications, vol. 5. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  15. Chowdhury, A.R., Chetty, M., Vinh, N.X.: Incorporating time-delays in s-system model for reverse engineering genetic networks. BMC Bioinform. 14(1), 196 (2013)

    Article  Google Scholar 

  16. Ram, R., Chetty, M.: A markov-blanket-based model for gene regulatory network inference. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(2), 353–367 (2011)

    Article  Google Scholar 

  17. Mariani, T.J., Budhraja, V., Mecham, B.H., Gu, C.C., Watson, M.A., Sadovsky, Y.: A variable fold change threshold determines significance for expression microarrays. FASEB J. 17(2), 321–323 (2003)

    Google Scholar 

  18. Marbach, D., Schaffter, T., Mattiussi, C., Floreano, D.: Generating realistic in silico gene networksfor performance assessment of reverse engineering methods. J. Comput. Biol. 16(2), 229–239 (2009)

    Article  Google Scholar 

  19. Stolovitzky, G., Monroe, D., Califano, A.: Dialogue on reverse-engineering assessment and methods. Ann. N. Y. Acad. Sci. 1115(1), 1–22 (2007)

    Article  Google Scholar 

  20. Schaffter, T., Marbach, D., Roulet, G.: Genenetweaver user manual (2012)

    Google Scholar 

  21. Chowdhury, A.R., Chetty, M.: An improved method to infer gene regulatory network using s-system. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 1012–1019, IEEE (2011)

    Google Scholar 

  22. Xuan, N., Chetty, M., Coppel, R., Wangikar, P.P.: Gene regulatory network modeling via global optimization of high-order dynamic bayesian network. BMC Bioinform. 13(1), 131 (2012)

    Article  Google Scholar 

  23. Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: a survey. IEEE Trans. Knowl. Data Eng. 16(11), 1370–1386 (2004)

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the Australia-India strategic research fund (AISRF) having the reference number BF040037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Chetty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rahman, M.A., Chetty, M., Bulach, D., Wangikar, P.P. (2015). Frequency Decomposition Based Gene Clustering. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9490. Springer, Cham. https://doi.org/10.1007/978-3-319-26535-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26535-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26534-6

  • Online ISBN: 978-3-319-26535-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics