Skip to main content

Computation and Multiple Realizability

  • Chapter
  • First Online:
Book cover Fundamental Issues of Artificial Intelligence

Part of the book series: Synthese Library ((SYLI,volume 376))

Abstract

Multiple realizability (MR) is traditionally conceived of as the feature of computational systems, and has been used to argue for irreducibility of higher-level theories. I will show that there are several ways a computational system may be seen to display MR. These ways correspond to (at least) five ways one can conceive of the function of the physical computational system. However, they do not match common intuitions about MR. I show that MR is deeply interest-related, and for this reason, difficult to pin down exactly. I claim that MR is of little importance for defending computationalism, and argue that it should rather appeal to organizational invariance or substrate neutrality of computation, which are much more intuitive but cannot support strong antireductionist arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I owe this observation Aaron Sloman.

References

  • Aizawa, K., & Gillett, C. (2009). The (multiple) realization of psychological and other properties in the sciences. Mind & Language, 24(2), 181–208. doi:10.1111/j.1468-0017.2008.01359.x.

    Article  Google Scholar 

  • Bechtel, W. (2008). Mental mechanisms. New York: Routledge (Taylor & Francis Group).

    Google Scholar 

  • Bechtel, W., & Mundale, J. (1999). Multiple realizability revisited: Linking cognitive and neural states. Philosophy of Science, 66(2), 175–207.

    Article  Google Scholar 

  • Block, N. (1990). Can the mind change the world? In G. Boolos (Ed.), Meaning and method: Essays in honor of Hilary Putnam (pp. 137–170). Cambridge: Cambridge University Press.

    Google Scholar 

  • Chalmers, D. J. (2011). A computational foundation for the study of cognition. Journal of Cognitive Science, 12, 325–359.

    Article  Google Scholar 

  • Craver, C. F. (2007). Explaining the brain. Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Craver, C. F. (2013). Functions and mechanisms: A perspectivalist view. In P. Hunemann (Ed.), Functions: Selection and mechanisms (pp. 133–158). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Cummins, R. (1975). Functional analysis. The Journal of Philosophy, 72(20), 741–765.

    Article  Google Scholar 

  • Davies, P. S. (2001). Norms of nature: Naturalism and the nature of functions. Cambridge: MIT Press.

    Book  Google Scholar 

  • Dennett, D. C. (1995). Darwin’s dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster.

    Google Scholar 

  • Fodor, J. A. (1968). The appeal to tacit knowledge in psychological explanation. The Journal of Philosophy, 65(20), 627–640.

    Article  Google Scholar 

  • Fodor, J. A. (1974). Special sciences (or: The disunity of science as a working hypothesis). Synthese, 28(2), 97–115. doi:10.1007/BF00485230.

    Article  Google Scholar 

  • Fresco, N. (2014). Physical computation and cognitive science. Berlin/Heidelberg: Springer. doi:10.1007/978-3-642-41375-9.

    Book  Google Scholar 

  • Gillett, C. (2002). The dimensions of realization: A critique of the standard view. Analysis, 62(4), 316–323.

    Article  Google Scholar 

  • Gillett, C. (2011). Multiply realizing scientific properties and their instances. Philosophical Psychology, 24(6), 1–12. doi:10.1080/09515089.2011.559625.

    Article  Google Scholar 

  • Glymour, C. (1994). On the methods of cognitive neuropsychology. The British Journal for the Philosophy of Science, 45(3), 815–835. doi:10.1093/bjps/45.3.815.

    Article  Google Scholar 

  • Haimovici, S. (2013). A problem for the mechanistic account of computation. Journal of Cognitive Science, 14(2), 151–181.

    Article  Google Scholar 

  • IBM Archives: 709 Data Processing System. (2003, January 23). Retrieved January 11, 2014, from http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PP709.html

  • IBM Archives: 7090 Data Processing System. (2003, January 23). Retrieved January 11, 2014, from http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PP7090.html

  • Keeley, B. L. (2000). Shocking lessons from electric fish: The theory and practice of multiple realization. Philosophy of Science, 67(3), 444–465.

    Article  Google Scholar 

  • Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of Science, 80(2), 241–261. doi:10.1086/670300.

    Article  Google Scholar 

  • Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.

    Article  Google Scholar 

  • Malcolm, G. (1996). Behavioural equivalence, bisimulation, and minimal realisation. In Recent trends in data type specification (pp. 359–378). Berlin/Heidelberg: Springer. doi:10.1007/3-540-61629-2_53.

    Chapter  Google Scholar 

  • Meyer, D. E., Osman, A. M., Irwin, D. E., & Yantis, S. (1988). Modern mental chronometry. Biological Psychology, 26(1–3), 3–67. doi:10.1016/0301-0511(88)90013-0.

    Article  Google Scholar 

  • MiƂkowski, M. (2011). Beyond formal structure: A mechanistic perspective on computation and implementation. Journal of Cognitive Science, 12(4), 359–379.

    Google Scholar 

  • MiƂkowski, M. (2013). Explaining the computational mind. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • MiƂkowski, M. (2014). Computational mechanisms and models of computation. Philosophia ScientiĂŠ, 18(3), 215–228.

    Google Scholar 

  • Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74(4), 501–526. doi:10.1086/522851.

    Article  Google Scholar 

  • Piccinini, G. (2010). Computation in physical systems. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Retrieved January 11, 2014 from http://plato.stanford.edu/archives/sum2015/entries/computation-physicalsystems/.

  • Polger, T. W. (2004). Natural minds. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Polger, T. W. (2008). Evaluating the evidence for multiple realization. Synthese, 167(3), 457–472. doi:10.1007/s11229-008-9386-7.

    Article  Google Scholar 

  • Polger, T. W., & Shapiro, L. A. (2008). Understanding the dimensions of realization. Journal of Philosophy, 105, 213–222.

    Article  Google Scholar 

  • Posner, M. I. (2005). Timing the brain: Mental chronometry as a tool in neuroscience. PLoS Biology, 3(2), e51. doi:10.1371/journal.pbio.0030051.

    Article  Google Scholar 

  • Price, C. (2001). Functions in mind: A theory of intentional content. Oxford/New York: Clarendon.

    Book  Google Scholar 

  • Putnam, H. (1975). Philosophy and our mental life. In Mind, language and reality: Philosophical papers (Vol. 1, pp. 291–304).

    Google Scholar 

  • Shagrir, O. (1998). Multiple realization, computation and the taxonomy of psychological states. Synthese, 114(3), 445–461. doi:10.1023/A:1005072701509.

    Article  Google Scholar 

  • Shapiro, L. A. (2000). Multiple realizations. The Journal of Philosophy, 97(12), 635–654.

    Article  Google Scholar 

  • Shapiro, L. A. (2004). The mind incarnate. Cambridge, MA: MIT Press.

    Google Scholar 

  • Shapiro, L. A. (2008). How to test for multiple realization. Philosophy of Science, 75(5), 514–525. doi:10.1086/594503.

    Article  Google Scholar 

  • Sober, E. (1999). The multiple realizability argument against reductionism. Philosophy of Science, 66(4), 542–564.

    Article  Google Scholar 

  • Wilson, R. A., & Craver, C. F. (2007). Realization: Metaphysical and scientific perspectives. In P. Thagard (Ed.), Philosophy of psychology and cognitive science (pp. 81–104). Amsterdam: North Holland. doi:10.1016/B978-044451540-7/50020-7.

    Chapter  Google Scholar 

  • Wimsatt, W. C. (2002). Functional organization, analogy, and inference. In A. Ariew, R. Cummins, & M. Perlman (Eds.), Functions: New essays in the philosophy of psychology and biology (pp. 173–221). Oxford: Oxford University Press.

    Google Scholar 

Download references

Acknowledgements

The work on this paper was financed by National Science Centre under the program OPUS, grant no. 2011/03/B/HS1/04563. The author wishes to thank Aaron Sloman for an extended discussion of his idea, to the audience at PT-AT 13, and to the anonymous referee of the previous version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin MiƂkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

MiƂkowski, M. (2016). Computation and Multiple Realizability. In: MĂŒller, V.C. (eds) Fundamental Issues of Artificial Intelligence. Synthese Library, vol 376. Springer, Cham. https://doi.org/10.1007/978-3-319-26485-1_3

Download citation

Publish with us

Policies and ethics