Skip to main content

Cyclotron Resonance at the Particle–Strong Wave Interaction

  • Chapter
  • First Online:
Relativistic Nonlinear Electrodynamics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 88))

  • 1302 Accesses

Abstract

In this chapter we will consider a charged particle interaction with a strong EM wave in the presence of a uniform magnetic field along the wave propagation direction when the resonant effect of the wave on the particle rotational motion in the static magnetic field is possible. In vacuum, as a result of the interaction of a charged particle with a monochromatic EM wave and uniform magnetic field the resonance created at the initial moment for the free-particle velocity automatically holds throughout the interaction process due to the equal Doppler shifts of the Larmor and wave frequencies in the field. This phenomenon is known as “Autoresonance”. This property of cyclotron resonance in vacuum makes possible the creation of a generator of coherent radioemission by an electron beam, namely a cyclotron resonance maser (CRM). From the point of view of quantum theory the relativistic nonequidistant Landau levels of the particle in the wave field become equidistant in the autoresonance due to the quantum recoil at the absorption/emission of photons by the particle. In addition, the dynamic Stark effect of the wave electric field on the transverse bound states of the particle does not violate the equidistance of Landau levels in the autoresonance. Then the inverse process, that is, multiphoton resonant excitation of Landau levels by strong EM wave and, consequently, the particle acceleration in vacuum due to cyclotron resonance, in principle, is possible. In a medium with arbitrary refractive properties (dielectric or plasma) because of the different Doppler shifts of the Larmor and wave frequencies in the interaction process the autoresonance is violated. However, the threshold (by the wave intensity) phenomenon of electron hysteresis in a medium due to the nonlinear cyclotron resonance in the field of strong monochromatic EM wave takes place. In contrast to autoresonance, the nonlinear cyclotron resonance in a medium proceeds with a large enough resonant width. This so-called phenomenon of electron hysteresis leads to a significant acceleration of particles, especially in the plasmalike media where the superstrong laser fields of relativistic intensities can be applied. The use of dielectriclike (gaseous) media makes it possible to realize cyclotron resonance in the optical domain (with laser radiation) due to an arbitrarily small Doppler shift of a wave frequency close to the Cherenkov cone, in contrast to the vacuum case where the cyclotron resonance for the existing maximal powerful static magnetic fields is possible only in the radio-frequency domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • A.V. Gaponov, M.A. Miller, Zh. Éksp. Teor. Fiz. 34, 242 (1958)

    Google Scholar 

  • M.A. Miller, Izv. VUZov, Radiofizika 1, 110 (1958) [in Russian]

    Google Scholar 

  • Ya.B. Fainberg, V.I. Kurilko, Zh. Tekh. Fiz. 29, 935 (1959) [in Russian]

    Google Scholar 

  • M.I. Petelin, Izv. VUZov, Radiofizika 4, 455 (1961) [in Russian]

    Google Scholar 

  • A.A. Andronov, M.I. Petelin, V.V. Zheleznyakov, Izv. VUZov, Radiofizika 7, 251 (1961) [in Russian]

    Google Scholar 

  • M.A. Miller, Izv. VUZov, Radiofizika 5, 929 (1962) [in Russian]

    Google Scholar 

  • B.G. Eremin, M.A. Miller, Izv. VUZov, Radiofizika 5, 1151 (1962) [in Russian]

    Google Scholar 

  • V.Ya. Davidovsky, Zh. Éksp. Teor. Fiz. 43, 886 (1962)

    Google Scholar 

  • A.A. Kolomensky, A.N. Lebedev, Zh. Éksp. Teor. Fiz. 44, 261 (1963)

    Google Scholar 

  • V.S. Voronin, A.A. Kolomensky, Zh. Éksp. Teor. Fiz. 47, 1528 (1964)

    Google Scholar 

  • A.I. Nikishov, V.I. Ritus, Zh. Éksp. Teor. Fiz. 64, 776 (1964)

    Google Scholar 

  • C.S. Roberts, S.J. Buchsbaum, Phys. Rev. A 135, 381 (1964)

    Article  ADS  Google Scholar 

  • P.J. Redmond, Math. Phys. 6, 1163 (1965)

    Article  ADS  Google Scholar 

  • V.P. Oleinik, Zh. Éksp. Teor. Fiz. 52, 1049 (1967)

    Google Scholar 

  • V.P. Oleinik, Zh. Éksp. Teor. Fiz. 53, 1997 (1967)

    Google Scholar 

  • V.M. Haroutunian, H.K. Avetissian, Izv. Akad, Nauk Arm. SSR Ser. Fiz. 9, 110 (1974) [in Russian]

    Google Scholar 

  • H.K. Avetissian, Izv. Akad, Nauk Arm. SSR Ser. Fiz. 10, 3 (1975) [in Russian]

    Google Scholar 

  • Yu.A. Andreev, V.Ya. Davidovsky, Zh. Tekh. Fiz. 45, 3 (1975) [in Russian]

    Google Scholar 

  • Yu.A. Andreev, V.Ya. Davidovsky, Zh. Tekh. Fiz. 46, 413 (1976) [in Russian]

    Google Scholar 

  • Yu.A. Andreev, V.Ya. Davidovsky, V.N. Danilenko, Zh. Tekh. Fiz. 46, 2380 (1976) [in Russian]

    Google Scholar 

  • Yu.A. Andreev, V.Ya. Davidovsky, V.N. Danilenko, Zh. Tekh. Fiz. 48, 2184 (1978) [in Russian]

    Google Scholar 

  • I.M. Ternov, V.R. Khalilov, V.N. Rodionov, Interaction of Charged Particles with Strong Electromagnetic Field (Mosk. Gos. Univ, Moscow, 1982) [in Russian]

    Google Scholar 

  • A.A. Sokolov, I.M. Ternov, Relativistic Electron (Nauka, Moscow, 1983) [in Russian]

    Google Scholar 

  • H.K. Avetissian, K.Z. Hatsagortsian, Zh. Tekh. Fiz. 54, 2347 (1984) [in Russian]

    Google Scholar 

  • R.M. Robb, Phys. Rev. E 50, 3345 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • G.S. Nusinovich, P.E. Latham, O. Dumbrajs, Phys. Rev. E 52, 998 (1995)

    Article  ADS  Google Scholar 

  • S.J. Cooke, A.W. Cross, W. He, A.D.R. Phelps, Phys. Rev. Lett. 77, 4836 (1996)

    Article  ADS  Google Scholar 

  • V.L. Bratman, A.D.R. Phelps, A.V. Savilov, Phys. Plasmas 4, 2285 (1997)

    Article  ADS  Google Scholar 

  • B.W.J. McNeil, G.R.M. Robb, A.D.R. Phelps, J. Phys. D 30, 1688 (1997)

    Article  ADS  Google Scholar 

  • P. Aitken et al., J. Phys. D 30, 2482 (1997)

    Article  ADS  Google Scholar 

  • N.S. Ginzburg et al., Phys. Rev. Lett. 78, 2365 (1997)

    Article  ADS  Google Scholar 

  • P. Aitken, B.W.J. McNeil, G.R.M. Robb, A.D.R. Phelps, Phys. Rev. E 59, 1152 (1999)

    Article  ADS  Google Scholar 

  • N.S. Ginzburg et al., IEEE Trans. Plasma Sci. 27, 462 (1999)

    Article  ADS  Google Scholar 

  • Y.I. Salamin, F.H.M. Faisal, C.H. Keitel, Phys. Rev. A 62, 53809 (2000)

    Article  ADS  Google Scholar 

  • H.K. Avetissian, G.F. Mkrtchian, M.G. Poghosyan, Zh. Éksp. Teor. Fiz. 99, 290 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamlet K. Avetissian .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Avetissian, H.K. (2016). Cyclotron Resonance at the Particle–Strong Wave Interaction. In: Relativistic Nonlinear Electrodynamics. Springer Series on Atomic, Optical, and Plasma Physics, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-319-26384-7_4

Download citation

Publish with us

Policies and ethics