Skip to main content

Genetic Diversity, Genetic Erosion, and Conservation of the Two Cultivated Rice Species (Oryza sativa and Oryza glaberrima) and Their Close Wild Relatives

  • Chapter
  • First Online:

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 8))

Abstract

Rice cultivated gene pool includes two species. Asian rice, Oryza sativa, displays a very large phenotypic diversity resulting from a long history of domestication driven by human demographic expansion and sympatry with its wild relatives. African rice, Oryza  glaberrima, represents a typical case of domestication bottleneck. Recent sympatry of the two species in Africa has given birth to new diversity. Current rice in situ genetic diversity results from the succession of a number of long-standing evolutionary events and the contemporary reversal of the trend of increasing diversity, referred to as genetic erosion. Since the early twentieth century, human demographic growth, agricultural modernisation and the advent of formal breeding systems, have affected the in situ diversity of cultivated rice species and their wild relatives. The evolutionary processes had produced a very large number of Landraces (LV) of which some 500,000 are conserved ex situ. The contemporary changes have resulted in the replacement of a large proportion of LV by a small number of Modern varieties (MV) in more than 70 % of rice-growing areas in Asia and Latin America, 38 % in Africa. The most important feature of rice in situ diversity emerging from our case studies in China, South and Southeast Asian countries, West Africa and Madagascar, is the diversity of situations. Aggregated data suggest massive absolute genetic erosion and sharp reduction of diversity indexes, particularly in irrigated ecosystems. Detailed surveys indicate smoother genetic erosion in rainfed ecosystems. However, the perspectives of rice in situ genetic diversity are gloomy even in rainfed ecosystems. The most realistic and promising option for the future is a dynamic management in the framework of the emerging concept of ecological intensification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmadi N, Glaszmann JC, Rabary E (1991) Traditional highland rices originating from intersubspecific recombination in Madagascar. In: Rice genetics II. Los Banos, Philippines, IRRI, pp 67–79. International Rice Genetics Symposium. 2, 1990/05/14-18, Los Banos, Philippines

    Google Scholar 

  • Ahmadi N, Billot C, Droc G, Brunel D, Frouin J, Ramanantsoanirina A, McNally KL, Courtois B, Glaszmann JC (2013) Patterns of rice diversity from SNP delineated the origin of the atypical O. sativa group in Madagascar from intermediary forms of the Indian sub-continent. In: IRRI (ed) 7th international rice genetics symposium. IRRI, Manila, Philippines, 5–8 Nov 2013

    Google Scholar 

  • Akimoto M, Shimamoto Y, Morishima H (1999) The extinction of genetic resources of Asian wild rice, Oryza rufipogon Griff.: a case study in Thailand. Genet Resour Crop Evol 46:419–425

    Article  Google Scholar 

  • Allaby RG, Fuller DQ, Brown TA (2008) The genetic expectations of a protracted model for the origins of domesticated crops. PNAS USA 105:13982–13986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ammiraju JS, Lu F, Sanyal A, Yu Y, Song X, Jiang N, Pontaroli AC, Rambo T, Currie J, Collura K (2008) Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. Plant Cell 20(12):3191–3209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Appa Rao S, Bounphanousay C, Schiller JM, Jackson MT (2002) Collection, classification, and conservation of cultivated and wild rices of the Lao PDR Genet Resour Crop Evol 49:75–81

    Google Scholar 

  • Ballini E, Berruyer R, Morel JB, Lebrun MH, Nottéghem JL, Tharreau D (2007) Modern elite rice varieties of the ‘Green Revolution’ have retained a large introgression from wild rice around the Pi33 rice blast resistance locus. New Phitologist 175(1):340–350

    Article  CAS  Google Scholar 

  • Banaticla-Hilario MC, van den Berg RG Hamilton NR, McNally KL (2013) Local differentiation amidst extensive allele sharing in Oryza nivara and O. rufipogon. Ecol Evol 3(9):3047–3062

    Google Scholar 

  • Barry MB, Pham JL, Noyer JL, Billo C, Courtois B, Ahmadi N (2007a) Genetic diversity of the two cultivated rice species (O. sativa & O. glaberrima) in Maritime Guinea. Evidences for inter-specific recombination. Euphytica 154:127–137

    Article  CAS  Google Scholar 

  • Barry MB, Pham JL, Courtois B, Billo C, Ahmadi N (2007b) Rice genetic diversity at farm and village levels and genetic structure of local varieties reveal need for in situ conservation. Genetique Resour Crop Evol 54:1675–1690

    Article  CAS  Google Scholar 

  • Barry MB, Pham JL, Béavogui S, Ghesquière A, Ahmadi N (2008) Diachronic (1979–2003) analysis of rice genetic diversity in six villages of Maritime Guinea did not reveal genetic erosion. Genetique Resour Crop Evol 55:723–733

    Article  Google Scholar 

  • Barry MB, Diagne A, Sogbossi MJ, Pham JL, Diawara S, Ahmadi N (2009) Recent changes in varietal diversity of rice in Guinea. Plant Genet Resour Charact Utilization 7(1):63–71

    Article  Google Scholar 

  • Bellwood P (2011) The checkered prehistory of rice movement southwards as a domesticated cereal-from the Yangzi to the equator. Rice 4(3):93–103

    Article  Google Scholar 

  • Bezançon G (1995) Riziculture traditionnelle en Afrique de l’Ouest: valorisation et conservation des ressources génétiques. Journal d’Agriculture Traditionnelle et de Botanique Appliquée 37:3–24

    Article  Google Scholar 

  • Buckler ESI, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure and domestication of grasses. Genet Res 77:213–218

    Article  CAS  PubMed  Google Scholar 

  • Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, York TL, Polato NR, Olsen KM, Nielsen R, McCouch SR, Bustamante CD, Purugganan MD (2007) Genomewide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet 3:1745–1756

    Article  CAS  PubMed  Google Scholar 

  • Cao YS, Zhang XZ, Gong GF, Li L (1995) Atlas of main plant crop germplasm resources in China. Agricultural Publishing House, Beijing

    Google Scholar 

  • Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20:67–75

    Article  CAS  PubMed  Google Scholar 

  • Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY (2007) Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot 100:959–966

    Article  PubMed Central  PubMed  Google Scholar 

  • Choudhury B, Khan ML, Dayanandan S (2013) Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the Eastern Himalayan region of Northeast India. SpringerPlus 2:228

    Article  PubMed Central  PubMed  Google Scholar 

  • Dalton TJ, Guei RG (2003) Productivity gains from rice genetic enhancements in West Africa: countries and ecologies. World Dev 31(2):359–374

    Article  Google Scholar 

  • Döring TF, Knapp S, Kovacs G, Murphy K, Wolfe MS (2011) Evolutionary plant breeding in cereals: into a new era. Sustainability 3:1944–1971

    Article  Google Scholar 

  • Evenson RE (2003) Production impacts of crop genetic improvement. In: Evenson RE, Gollin D (eds) Crop variety improvement and its effect on productivity, the impact of international agricultural research. CABI publishing, Wallingford, pp 447–471

    Chapter  Google Scholar 

  • Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758

    Article  CAS  PubMed  Google Scholar 

  • Fu LG, Jin JM (eds) (1992) Chinese red data book of plant species: rare and endangering plants. Science Press, Beijing

    Google Scholar 

  • Gao LZ (2003) The conservation of Chinese rice biodiversity: genetic erosion, ethnobotany and prospects. Genet Resour Crop Evol 50:17–32

    Article  CAS  Google Scholar 

  • Gao LZ, Li DY, Wu XG, Chen W, Huang ZM, Wei XW (2012) In Situ conservation of wild rice populations: a targeted study of common wild rice Oryza rufipogon from China. Am J Plant Sci 3:854–868

    Article  Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glaszmann JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74:21–30

    Article  CAS  PubMed  Google Scholar 

  • Griffon M (2007) Pour des agricultures écologiquement intensives. In: Les défis de l’agriculture au xxi e siècle, Leçons inaugurales du Groupe ESA, Angers

    Google Scholar 

  • Hammer K, Laghetti G (2005) Genetic erosion—examples from Italy. Genet Resour Crop Evol 52:629–634

    Article  Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188:618–621

    Article  Google Scholar 

  • Higham C, Lu TL-D (1998) The origins and dispersal of rice cultivation. Antiquity 72: 867–877

    Google Scholar 

  • Hossain M, Jaim WMH (2009) Diversity and diffusion of rice varieties: a data base for Bangladesh. Report submitted to IFPRI, Harvest Plus Project

    Google Scholar 

  • Hossain M, Jaim WMH, Paris TR, Hardy B (eds) (2012) Adoption and diffusion of modern rice varieties in Bangladesh and eastern India. International Rice Research Institute, Los Baños (Philippines), p 251

    Google Scholar 

  • Hossain M, Jaim WMH, Alam MS, Rahman M (2013) Rice biodiversity in Bangladesh: adoption, diffusion and disappearance of varieties. A statistical report from farm survey in 2005. BRAC Research and Evaluation Division, Dhaka, Bangladesh February 2013

    Google Scholar 

  • Huang X, Kurata N, Wei X, Wang Z, Wang A, Zhao Q, Zhao Y, Liu L, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature. doi:10.1038/nature11532

    Google Scholar 

  • IRRI (2010) Global strategy for the ex situ conservation of rice genetic resources. International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippine

    Google Scholar 

  • Ishii T, Xu Y, McCouch SR (2001) Nuclear- and chloroplast-microsatellite variation in A-genome species of rice. Genome 44:658–666

    Article  CAS  PubMed  Google Scholar 

  • Jarvis DI, Brown A, Cuong P, Collado-Panduro L, Latournerie-Moreno L, Gyawali S, Tanto T, Sawadogo M, Mar I, Sadiki M, Hue N, Arias-Reyes L, Balma D, Bajracharya J, Castillo F, Rijal D, Belqadi L, Ranag R, Saidi S, Ouedraogo J, Zangre R, Rhrib K, Chavez JL, Schoenu D, Sthapit B, De Santis P, Fadda C, Hodgkin T (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. PNAS USA 105:5326–5331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeanguyot M, Ahmadi N (2002) Rice grain, life grain (in French) (ed) Cirad—Magellan & Cie, Paris, France. 140 p

    Google Scholar 

  • Jones MP, Dinkuhn M, Aluko GK, Semon M (1997) Interspecific Oryza sativa L. and O. glaberrima Steud. Progenies in upland rice improvement. Euphytica 92:237–246

    Article  Google Scholar 

  • Kam H (2011) A study of the diversity of Burkina Faso rice landraces and identification of source of resistance to Rice yellow mottle virus (RYMV). PhD. thesis. Kwazoulou-Natal University. 143 p

    Google Scholar 

  • Khlestkina EK, Huang XQ, Quenum FJB, Chebotar S, Roder MS, Borner A (2004) Genetic diversity in cultivated plants–loss or stability? Theor Appl Genet 108:1466–1472

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation in rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  • Kiær LP, Skovgaard IM, Hanne Østergard H (2009) Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Res 114:361–373

    Article  Google Scholar 

  • Kiang YT, Antonovics J, Wu L (1979) The extinction of wild rice (Oryza perennisformosana) in Taiwan. J Asian Ecol 1:1–9

    Google Scholar 

  • Larson DF, Otsuka K, Kajisa K, Estudillo J, Diagne A (2010) Can Africa replicate Asia’s green revolution in rice? Word Bank. Policy Research Working Paper 5478

    Google Scholar 

  • Linares OF (2002) African rice (Oryza glaberrima): history and future potential. PNAS USA 99(25):16360–16365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Xin Y, Yuan LP (2009) Hybrid rice technology development ensuring China’s food security. IFPRI Discussion Paper 00918

    Google Scholar 

  • Li ZM, Zheng XM, Ge S (2011) Genetic diversity and domestication history of African rice (Oryza glaberrima) as inferred from multiple gene sequences. Theor Appl Genet 123:21–31

    Article  PubMed  Google Scholar 

  • Maclean JL, Dawe DC, Hardy B, Hettel GP (eds) (2002) Rice almanac, 3rd edn. IRRI, WARDA, CIAT and FAO, Philippines

    Google Scholar 

  • Mande S, Nielsen R, Jones MP, McCouch SR (2005) The population structure of African cultivated rice Oryza glaberrima (Steud.): evidence for elevated levels of linkage disequilibrum caused by admixture with O. sativa and ecological adaptation. Genetics 169:1639–1647

    Google Scholar 

  • Matsuo T (1955) Rice culture in Japan. Yokendo Ltd., Tokyo

    Google Scholar 

  • Maughan PJ, Saghai Maroof MA, Buss GR, Huestis GM (1996) Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. Theor Appl Genet 93:392–401

    Article  CAS  PubMed  Google Scholar 

  • Morishima H (1986) Wild progenitors of cultivated rice and their population dynamics. In: Rice genetics. International Rice Research Institute, Manila, Philippines, pp 3–14

    Google Scholar 

  • Morishima H (2001) Molecular markers, genetic diversity, and evolution: evolution and domestication of rice. In: Khush GS, Brar DS, Hardy B (eds) Rice genetics IV. Proceedings of the fourth international rice genetics symposium, Science Publishers, Inc., Los Baños, Philippines. Enfield, NH (USA). International Rice Research Institute, Los Baños (Philippines), 488 p, 22–27 Oct 2000

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. PNAS USA 70:3321–3323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen TNH (2005) On-farm conservation of rice genetic diversity under salinity stress: case study in a lowland agrosystem of Vietnam. In: Jarvis D, Mar I, Sears L (eds) Enhancing the use of Crop genetic diversity. International Plant Genetic Resources Institute, IBPGR. IRDC, Rome, pp 49–54

    Google Scholar 

  • OAE (1998) Report on the Survey of Main Season Rice, 1996/97 Season (Office of Agriculture Economic, Thailand) Agricultural Statistic Document No. 9/1998

    Google Scholar 

  • Oka HI (1983) The indica-japonica differentiation of rice cultivars. A review. In: Crop improvement research. The society for the Advancement of Breeding Researches in Asia and Oceania, Bangi, Selanger, Malaysia, pp 117–128

    Google Scholar 

  • Oka HI (1988) Origin of cultivated rice. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Olsen KM, Purugganan MD (2002) Molecular evidence on the origin and evolution of glutinous rice. Genetics 162:941–950

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ouk M, Sakhan S (2010) Agrodiversity for in-situ conservation of local rice germplasm in and near its center of diversity: Cambodia, Laos and Thailand. The McKnight Foundation: Collaborative Crop Research Program (CCRP)

    Google Scholar 

  • Pandey S, Gauchan D, Malabayabas M, Bool-Emerick M, Hardy B (eds) (2012) Patterns of adoption of improved rice varieties and farm-level impacts in stress-prone rainfed areas in South Asia. International Rice Research Institute, Los Baños, p 318

    Google Scholar 

  • Peroni N, Hanazaki N (2002) Current and lost diversity of cultivated varieties, especially cassava, under swidden cultivationsystems in the Brazilian Atlantic Forest. Agric Ecosyst Environ 92:171–183

    Article  Google Scholar 

  • Pinstrup-Andersen P, Hazell PBR (1985) The impact of the green revolution and prospects for the future. Food Rev Int 1(1):1–25

    Article  Google Scholar 

  • Pistorius R (1997) Scientists, plants and politics—a history of the plant genetic resources movement. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Portères R (1950) Vieilles agricultures de l’Afrique tropicale: centre d’origine, de diversification variétale primaire et berceau de l’agriculture ante´rieure au XVIème siècle. Agron Trop 44:165–178

    Google Scholar 

  • Portères R (1970) Primary cradles of agriculture in the African continent. In: Fage J, Olivier R (eds) Papers in African Prehistory. Cambridge University Press, Cambridge, pp 43–58

    Google Scholar 

  • Pusadeea T, Jamjoda S, Chiangb YC, Rerkasema B, Schaal BA (2009) Genetic structure and isolation by distance in a landrace of Thai rice. PNAS USA 106(33):13880–13885

    Article  Google Scholar 

  • Radanielina T, Ramanantsoanirina A, Raboin LM, Frouin J, Perrier X, Brabant P, Ahmadi N (2013a) The original features of rice (Oryza sativa L.) genetic diversity and the importance of within-variety diversity in the highlands of Madagascar build a strong case for in situ conservation. Genet Resour Crop Evol 60:311–323. doi:10.1007/s10722-012-9837-3

    Article  Google Scholar 

  • Radanielina T, Ramanantsoanirina A, Raboin LM, Ahmadi N (2013b) Déterminants de la diversité variétale du riz dans la région de Vakinankaratra. Madagascar Cah Agric 22(5):442–449

    Google Scholar 

  • Rerkasem B, Rerkasem K (2002) Agrodiversity for in situ conservation of Thailand’s native rice germplasm. CMU J 1(2):129–148

    Google Scholar 

  • Rerkasem B, Schaal BA (2002) Conservation of rice biodiversity: year 1: agrodiversity for in situ conservation of local rice germplasm in and near its center of diversity. http://www.ccrp.org/results?keys=&field_aei_levers_tid=All&taxonomy_vocabulary_1001_tid=All&field_crops_tid=All, 26 Jun 2014

  • Sanni KA, Toure AA, Diagne A, Bachabi F, Murori R, Singkh RK, Si M (2013) Rice varietal release systems in Africa. In: Wopereis MCS, Johnson DE, Ahmadi N, Tollens E, Jalloh A (eds) Realizing Africa’s rice promise. CAB International, Wallingford, pp 79–86

    Chapter  Google Scholar 

  • Second G (1982) Origin of the genic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 isozyme loci. Jpn J Genet 57:25–57

    Article  Google Scholar 

  • Second G (1985) Relations 6volutives chez le genre Oryza et processus de domestication des riz. ORSTOM Etudes & Theses: 1–189. Paris

    Google Scholar 

  • Singh D (2009) Statistical information on Nepalese agriculture. Ministry of Agriculture and Cooperatives (MoAC), Government of Nepal, Kathamandu, Nepal

    Google Scholar 

  • Singh A, Singh B, Panda K, Rai VP, Singh AK, Singh SP, Chouhan SK, Rai V, Singh PK, Singh NK (2013a) Wild rices of Eastern Indo-Gangetic plains of India constitute two sub-populations harbouring rich genetic diversity. Plant Omic J 6(2):121–127

    CAS  Google Scholar 

  • Singh US, Dar MH, Sudhanshu S, Zaidi NW, Bari MA, Mackill DJ, Collard BCY, Singh VN, Singh JP, Reddy JN, Singh RK, Ismail AM (2013b) Field performance, dissemination, impact and tracking of submergence tolerant (Sub1) rice varieties in South Asia. SABRAO J Breed Genet 45(1):112–131

    Google Scholar 

  • Smolders H (2002) Baseline study on vegetable plant genetic resources in Indonesia and Cambodia. Pedigrea Project Report, CGN, Wageningen University, the Netherlands

    Google Scholar 

  • Song Z, Li B, Chen J, Lu BR (2005) Genetic diversity and conservation of common wild rice (Oryza rufipogon) in China. Plant Species Biol 20:83–92

    Article  Google Scholar 

  • Sow M (2011) A study of the diversity of Niger rice landraces and identification of source of resistance to Rice yellow mottle virus (RYMV). PhD thesis. Kwazoulou-Natal University, 161 p

    Google Scholar 

  • Steele KA, Gyawali S, Joshi KD, Shrestha P, Sthapit BR, Witcombe JR (2009) Has the introduction of modern rice varieties changed rice genetic diversity in a high-altitude region of Nepal? Field Crops Res 113:24–30

    Article  Google Scholar 

  • Sun CQ, Wang XK, Yoshimura A, Iwata N (2000) A study of the genetic diversity of common wild rice (O. rufipogon Griff.) and cultivated rice (O. sativa L.) by RFLP analysis. Yi Chuan Xue Bao 27(3):227–234

    CAS  PubMed  Google Scholar 

  • Sun JC, Cao GL, Ma J, Chen YF, Han LZ (2012) Comparative genetic structure within single-origin pairs of rice (Oryza sativa L.) landraces from in situ and ex situ conservation programs in Yunnan of China using microsatellite markers. Genet Resour Crop Evol 59:1611–1623

    Article  CAS  Google Scholar 

  • Sweeney M, McCouch S (2007) The Complex History of the Domestication of Rice. Annals of Botany 100(5):951–957

    Google Scholar 

  • Thakur AP, Pandey S (2009) 21st century India: view and vision. Global Vision Publishing House, New Delhi, p 97

    Google Scholar 

  • VAAS (2006) Final report on the establishment of the national information sharing mechanism on the implementation of the global plan of action for the conservation and utilization of plant genetic resources for food and agriculture in Vietnam. AG:GCP/RAS/186/JPN Field Document No. 2006/04

    Google Scholar 

  • van de Wouw M, Kik K, van Hintum T, van Treuren R, Visser B (2009) Genetic erosion in crops: concept, research results and challenges. Plant Genetic Res Charact Utilization 8(1):1–15

    Google Scholar 

  • Vaughan DA, Chang TT (1992) In situ conservation of rice genetic resources. Econ Bot 46(4):368–383

    Article  Google Scholar 

  • Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6:139–146

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Second G, Tanksley S (1992) Polymorphism and phylogenetic relationship among species in the genus Oryza as determined by analysis of nuclear RFLPs. Theor Appl Genet 83:565–581

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Cheng BY, Wu JL, Shen WF, Cheng SH (2006) Review and prospects on rice breeding and extension in China. Rice Sci 13(1):1–81

    Google Scholar 

  • Ying CS (2000) Conservation and utilization of rice genetic resources in China. Chin Rice Res Newsl 8:13–14 (in Chinese with English abstract)

    Google Scholar 

  • Yu LQ (1996) The taxonomy of cultivated rice in China. Chinese Agriculture Press, Beijing

    Google Scholar 

  • Zeder MA, Emshwiller E, Smith BD, Bradley DG (2006) Documenting domestication: the intersection of genetics and archaeology. Trends Genet 22:139–155

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MF, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467. doi:10.1038/ncomms1467

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu Q, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytolologist 167:249–265

    Article  CAS  Google Scholar 

  • Zhu Y, Wang Y, Chen H, Lu BR (2003) Conserving traditional rice varieties through management for crop diversity. Bioscience 53(2):158–162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmadi Nourollah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nourollah, A. (2016). Genetic Diversity, Genetic Erosion, and Conservation of the Two Cultivated Rice Species (Oryza sativa and Oryza glaberrima) and Their Close Wild Relatives. In: Ahuja, M., Jain, S. (eds) Genetic Diversity and Erosion in Plants. Sustainable Development and Biodiversity, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-25954-3_2

Download citation

Publish with us

Policies and ethics