Skip to main content

Carbon Nanotubes as a DNA Delivery Agent for Generation of Genetically Modified Mammals Embryos

  • Chapter
  • First Online:
Bioengineering Applications of Carbon Nanostructures

Abstract

Several research centers and pharmaceutical corporations routinely use genetically modified animals (GMAs) in the development of new drugs, in the identification of new drug targets and to test drugs’ efficacy and safety. The most usual methods to produce GMAs are pronuclear microinjection, somatic cell nuclear transfer, retroviral vectors, and recently, embryonic stem cell transgenesis. These methods make use of DNA vectors and present several limitations. Recently, nanomaterials have been applied as an alternative vector for delivery of exogenous DNA into mammalian cells. This chapter addresses the use of carbon nanotubes (CNTs) as a DNA delivery agent for the generation of genetically modified mammals embryos. CNTs can be easily bound to DNA by non-covalent attachement. The DNA strand spontaneously wraps around the carbon nanotubes and DNA molecules can be encapsulated within or around them. The process of interaction of DNA/RNA with CNT favors their protection from degradation by cytoplasmic nucleases, increasing the integration of the transgene into cell nucleus. Thus, the use of CNTs can be far simpler and less laborious when compared to other techniques to produce GMAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wolf E, Schernthaner W, Zakhartchenko V et al (2000) Transgenic technology in farm animals—progress and perspectives. Exp Physiol 85(6):615–625

    Article  Google Scholar 

  2. Harper GS, Brownlee A, Hall TH et al (2006) Global progress toward transgenic food animals: a survey of publicly available information. http://www.foodstandards.govt.nz/publications/documents/Transgenic%20Livestock%20Review%20CSIRO%20FINAL%2012Dec20031.pdf. Accessed 02 June 2013

  3. Maksimenko OG, Deykin AV, Khodarovich YM et al (2013) Use of transgenic animals in biotechnology: prospects and problems. Acta Naturae 5(1):33–46

    Google Scholar 

  4. Bianco A, Wu W, Pastorin G et al (2007) Carbon nanotube-based vectors for delivering immunotherapeutics and drugs. In: Kumar C (ed) Nanomaterials for medical diagnosis and therapy. Nanotechnologies for the life sciences, vol 10. Wiley-VCH, Weinheim, pp 85–142

    Google Scholar 

  5. Campos VF, de Leona PMM, Komninoua ER et al (2011) NanoSMGT: Transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency. Theriogenology 76:1552–1560

    Article  Google Scholar 

  6. Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotech 18:33–37

    Article  Google Scholar 

  7. Houdebine LM (2000) Transgenic animal bioreactors. Transgenic Res 9:305–320

    Article  Google Scholar 

  8. Majundar S, Sahay SSA (2009) Review of: biological and pharmaceutical nanomaterials. Mater Manuf Process 24(4):517–518

    Article  Google Scholar 

  9. Mao HQ, Roy K, Trouq-Le VL et al (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70(3):399–421

    Article  Google Scholar 

  10. DeLong RK, Reynolds CM, Malcolm Y et al (2010) Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotech Sci Appl 3:53–63

    Article  Google Scholar 

  11. Petersen EJ, Tu X, Dizdaroglu M (2013) Protective roles of single-wall carbon nanotubes in ultrasonication-induced DNA base damage. Small 9(2):205–208. doi:10.1002/smll.201201217

    Article  Google Scholar 

  12. Wu Y, Phillips JA, Liu H et al (2008) Carbon Nanotubes protect DNA strands during cellular delivery. ACS Nano 2(10):2023–2028. doi:10.1021/nn800325a

    Article  Google Scholar 

  13. Liu Y, Wu D, Zang W et al (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed 44:4782–4785. doi:10.1002/anie.200500042

    Article  Google Scholar 

  14. Voronina E, Wessel GM (2003) The regulation of oocyte maturatiom. Curr Top Dev Biol 58:53–110. doi:10.1016/S0070-2153(03)58003-6

    Article  Google Scholar 

  15. Van Den Hurk R, Zhao J (2005) Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63:1717–1751. doi:10.1016/j.theriogenology.2004.08.005

    Article  Google Scholar 

  16. Gilchrist RB, Thompson JG (2007) Oocyte maturation: Emerging concepts and technologies to improve developmental potential in vitro. Theriogenology 67:6–15. doi:10.1016/j.theriogenology.2006.09.027

    Article  Google Scholar 

  17. Ringette MJ, Chamberlin ME, Baur AW et al (1988) Molecular analysis of cDNA coding for ZP3, a sperm binding protein of the mouse Zona Pellucida. Dev Biol 127:287–295

    Article  Google Scholar 

  18. Wassarman PM, Liu C, Litscher ES (2004) Constructing the mammalian egg zona pellucida: some new pieces of an old puzzle. J Cell Sci 109:2001–2004

    Google Scholar 

  19. Green DP (1997) Three-dimensional structure of the zona pellucida. Rev Reprod 2:147–156

    Article  Google Scholar 

  20. Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci U S A. 71(4):1250–1254

    Article  Google Scholar 

  21. Brownlee C (2004) Biography of Rudolf Jaenisch. PNAS 101(39):13982–13984

    Article  Google Scholar 

  22. GlaxoSmithKline. http://www.gsk.com/content/dam/gsk/globals/documents/pdf/GSK-on-the-role-of-transgenic-animals-in-biomedical-research.pdf. Accessed 02 June 2013

  23. Novartis. http://www.novartis.com/innovation/responsibly-tackling-the-challenging-issues/animal-research/research-at-novartis/transgenic-animals.shtm. Accessed 02 June 1013

  24. Wei L (1997) Transgenic animals as new approaches in pharmacological studies. Annu Rev Pharmacol Toxicol 37:119–141

    Article  Google Scholar 

  25. Houdebine LM (2009) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32:107–121. doi:10.1016/j.cimid.2007.11.005

    Article  Google Scholar 

  26. Reuters. http://www.reuters.com/article/2007/04/18/us-biotech-argentina-diabetes-idUSN1744610320070418. Accessed 10 June 1013

  27. Biosidus: http://www.biosidus.com.ar/animales_transgenicos.php. Accessed 10 June 1013

  28. Australian National Heart and Medical Research Council. http://www.nhmrc.gov.au/health-ethics/ethical-issues/animal-human-transplantation-research-xenotransplantation. Accessed 10 June 1013

  29. Klymiuk N, Aaigner B, Brem G et al (2010) Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev 77(3):209–221. doi:10.1002/mrd.21127

    Google Scholar 

  30. Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818. doi:10.1126/science.1185383

    Article  Google Scholar 

  31. Alexandratos N (2009) How to feed the world in 2050. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf. Accessed 12 June 1013

  32. Tilmana D, Balzer C, Hill J et al (2011) Global food demand and the sustainable intensification of agriculture. Proc Nat Acad Sci USA 108(50):20260–20264. doi:10.1073/pnas.1116437108

    Article  Google Scholar 

  33. Royal Society of London (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. http://royalsociety.org/uploadedFiles/Royal_Society_Content/policy/publications/2009/4294967719.pdf. Accessed 12 June 1013

  34. Lal R (2004) Carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    Article  Google Scholar 

  35. Gifford JAH, Gifford CA (2013) Role of reproductive biotechnologies in enhancing food security and sustainability. Anim Front 3(3):14–19

    Article  Google Scholar 

  36. Brower V (1998) Nutraceuticals: poised for a healthy slice of the healthcare market? Nat Biotechnol 16(8):728–731

    Article  Google Scholar 

  37. Salamone D, Bevacqua R, Hiriart MI et al (2012) Transgenesis in farm animals. Anim Reprod 9(4):772–776

    Google Scholar 

  38. Dunn DA, Kooyman DL, Pinkert CA (2005) Foundation review: transgenic animals and their impact on the drug discovery industry. Drug Discov Today 10(11):757–767

    Article  Google Scholar 

  39. Ageta-Ishihara N, Yamakado H, Morita T et al (2013) Chronic overload of SEPT4, a parkin substrate that aggregates in Parkinson’s disease, causes behavioral alterations but not neurodegeneration in mice. Mol Brain 6(1):35. doi:10.1186/1756-6606-6-35

    Article  Google Scholar 

  40. Wu X, Ouyang H, Duan B et al (2012) Production of cloned transgenic cow expressing omega-3 fatty acids. Transgenic Res 21:537–543. doi:10.1007/s11248-011-9554-2

    Article  Google Scholar 

  41. Ramírez P, Montoya MJ, Ríos A et al (2005) Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-Transferase). Transplant Proc 37(9):4103–4106. doi:10.1016/j.transproceed.2005.09.186

    Article  Google Scholar 

  42. Gonzalez-Stawinski GV, Daggett CW, Lau CL et al (2002) Non-anti-Gal alpha1-3Gal antibody mechanisms are sufficient to cause hyperacute lung dysfunction in pulmonary xenotransplantation. J Am Coll Surg 194(6):765–773

    Article  Google Scholar 

  43. Berkel PHC, Welling MM, Geerts M et al (2002) Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol 20(5):484–487

    Article  Google Scholar 

  44. Chrenek P, Ryban L, Vetr H et al (2007) Expression of recombinant human factor VIII in milk of several generations of transgenic rabbits. Transgenic Res 16:353–361. doi:10.1007/s11248-007-9070-6

    Article  Google Scholar 

  45. Yekta AA, Dalman A, Eftekhari-Yazdi P et al (2013) Production of transgenic goats expressing human coagulation factor IX in the mammary glands after nuclear transfer using transfected fetal fibroblast cells. Transgenic Res 22:131–142. doi:10.1007/s11248-012-9634-y

    Article  Google Scholar 

  46. Hamada Y, Fujii H, Kitazawa R et al (2009) Thioredoxin-1 overexpression in transgenic mice attenuates streptozotocin-induce diabetic osteopenia: a novel role of oxidative stress and therapeutic implications. Bone 44(5):936–941. doi:10.1016/j.bone.2008.12.011

    Article  Google Scholar 

  47. Huynh K, McMullen JR, Julius TL et al (2010) Cardiac-specific IGF-1 receptor transgenic expression protects against cardiac fibrosis and diastolic dysfunction in a mouse model of diabetic cardiomyopathy. Diabetes 59(6):1512–1520. doi:10.2337/db09-1456

    Article  Google Scholar 

  48. Maga EA, Cullor JS, Smith W et al (2006) Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathog Dis 3(4):384–392

    Article  Google Scholar 

  49. Freitas VJF, Serova IA, Andreeva LE et al (2007) Production of transgenic goat (Capra hircus) with human granulocyte colony stimulating factor (hG-CSF) gene in Brazil. An Acad Bras Cienc 79(4):585–592

    Article  Google Scholar 

  50. Tong C, Li P, Wu NL et al (2010) Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 9:467(7312):211–3. doi: 10.1038/nature09368

    Google Scholar 

  51. Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433. doi:10.1126/science.1172447

    Article  Google Scholar 

  52. Tesson L, Usal C, Ménoret S et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29(8):695–696. doi:10.1038/nbt.1940

    Article  Google Scholar 

  53. Sasaki E, Suemizu H, Shimada A et al (2013) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527. doi:10.1038/nature08090

    Article  Google Scholar 

  54. Hu S, Ni W, Sai W et al (2013) Knock down of myostatin Expression by RNAi enhances muscle growth in transgenic sheep. PLoS ONE 8(3):e58521. doi:10.1371/journal.pone.0058521

    Article  Google Scholar 

  55. Huang YJ, Huang Y, Baldassarre H et al (2007) Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proc Natl Acad Sci USA 104(34):13603–13608. doi:10.1073/pnas.0702756104

    Article  Google Scholar 

  56. Gordon JW, Scangos GA, Plotkin DJ et al (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384

    Article  Google Scholar 

  57. Hogan B, Beddington R, Costantini F et al (1994) Manipulating the Mouse Embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  58. Wheeler MB, Walters EM (2001) Transgenic technology and applications in swine. Theriogenology 56:1345–1369

    Article  Google Scholar 

  59. Wall RJ, Pursel VG, Rammer RE et al (1985) Development of porcine ova that were centrifuged to permit visualization of pronuclei and nuclei. Biol Reprod 32:645–651

    Article  Google Scholar 

  60. Pursel VG, Rexroad CE (1993) Recent progress in the transgenic modification of swine and sheep. Mol Reprod Dev 36(2):251–254

    Article  Google Scholar 

  61. Niemann H, Kues WA (2003) Application of transgenesis in livestock for agriculture and biomedicine. Anim Reprod Sci 79(3–4):291–317

    Article  Google Scholar 

  62. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotencial cells from mouse embryos. Nature 292:154–156

    Article  Google Scholar 

  63. Bradley A, Evans MJ, Kaufman MH et al (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256

    Article  Google Scholar 

  64. Koller BH, Hagemann LJ, Doetscheman T et al (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci USA 86:8927–8931

    Article  Google Scholar 

  65. Gandolfi F, Panarossa G, Maffei S et al (2012) Why is it so difficult to derive pluripotent stem cells in domestic ungulates? Reprod Domest Anim 47(5):11–17

    Article  Google Scholar 

  66. Lavitrano MA, Camaione A, Fazio VM et al (1989) Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57:717–723

    Article  Google Scholar 

  67. Celebi C, Guillaudeux T, Auvray P et al (2003) The making of ‘‘transgenic spermatozoa”. Biol Rep 68:1477–1483

    Article  Google Scholar 

  68. Sperandio S, Lulli V, Bacci ML et al (1996) Sperm-mediated DNA transfer in bovine and swine species. Anim Biotechnol 7:59–77

    Article  Google Scholar 

  69. Lavitrano M, Bacci ML, Forni M (2002) Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Natl Acad Sci USA 99:14230–14235

    Article  Google Scholar 

  70. Brinster RL, Sandgren EP, Behringer RR et al (1989) No simple solution for making transgenic mice. Cell 59:239–241

    Article  Google Scholar 

  71. Eghbalsaied S, Ghaedi K, Laible G et al (2013) Exposure to DNA is insufficient for in vitro transgenesis of live bovine sperm and embryos. Reproduction 145:97–108

    Article  Google Scholar 

  72. Chan AWS, Homan EJ, Ballou LU et al (1998) Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proc Natl Acad Sci USA 95:14028–14033

    Article  Google Scholar 

  73. Cherry SR, Biniszkiewicz D, Van Parijs L et al (2000) Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol 20:7419–7426. doi:10.1128/MCB.20.20.7419-7426.2000

    Article  Google Scholar 

  74. Pfeifer A, Ikawa M, Dayn Y et al (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 99(4):2140–2145

    Article  Google Scholar 

  75. Hofmann A (2004) Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biol Reprod 71:405–409

    Article  Google Scholar 

  76. Pauwels K, Gijsbers R, Toelen J et al (2009) State-of-the-art lentiviral vectors for research use: risk assessment and biosafety recommendations. Curr Gene Ther 9:459–474. doi:10.2174/156652309790031120

    Article  Google Scholar 

  77. Lillico S, Vasey D, King T (2011) Lentiviral transgensis in livestock. Transgenic Res 20(3):441–442. doi:10.1007/s11248-010-9448-8

    Article  Google Scholar 

  78. Wilmut I, Schnieke AE, McWhir J et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:(6619)810–813

    Google Scholar 

  79. Schnieke AE, Kind AJ, Ritchie WA et al (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:(5346)2130–2133

    Google Scholar 

  80. Wall RJ, Powell AM, Paape MJ et al (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451

    Article  Google Scholar 

  81. Schellander K, Peli J, Schmoll F et al (1995) Artificial insemination in cattle with DNA-treated sperm. Animal Biotechnol 6:41–50. doi:10.1080/10495399509525831

    Article  Google Scholar 

  82. Powell AM, Talbot NC, Wells KD et al (2004) Cell donor influences success of producing cattle by somatic cell nuclear transfer. Biol Reprod 71:210–216. doi:10.1095/biolreprod.104.027193

    Article  Google Scholar 

  83. Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646. doi:10.1038/nrg2842

    Article  Google Scholar 

  84. Cui X, Ji D, Fisher DA et al (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29(1):64–67. doi:10.1038/nbt.1731

    Article  Google Scholar 

  85. Carlson DF, Tan W, Lillico SG et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109(43):17382–17387. doi:10.1073/pnas.1211446109

    Article  Google Scholar 

  86. Sanz V, Borowiak E, Lukanov P et al (2011) Optimising DNA binding to carbon nanotubes by non-covalent methods. Carbon 49:1775–1781. doi:10.1016/j.carbon.2010.12.064

    Article  Google Scholar 

  87. Rajendra J, Baxendale M, Rap LGD et al (2004) Flow linear dichroism to probe binding of aromatic molecules and DNA to single-walled carbon nanotubes. J Am Chem Soc 1269(36):11182–11188. doi:10.1021/ja048720j

    Article  Google Scholar 

  88. Enyashim AN, Gemming S, Seifert G (2007) DNA-wrapped carbon nanotubes. Nanotechnology 18(24):245702. doi:10.1088/0957-4484/18/24/245702

    Article  Google Scholar 

  89. Gao H, Kong Y (2004) Simulation of DNA-nanotube interactions. Annu Rev Mater Res 34:123–150. doi:10.1146/annurev.matsci.34.040203.120402

    Article  Google Scholar 

  90. Gigliotti B, Sakizzie B, Bethune DS et al (2006) Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. Nano Lett 6(2):159–164. doi:10.1021/nl0518775

    Article  Google Scholar 

  91. Li X, Peng Y, Qu X (2006) Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucl Acids Res 34(13):3670–3676. doi:10.1093/nar/gkl513

    Article  Google Scholar 

  92. Hughes ME, Brandin E, Golovchenko JA (2007) Optical absorption of DNA—carbon nanotube structures. Nano Lett 7(5):1191–1194. doi:10.1021/nl062906u

    Article  Google Scholar 

  93. Zhao X, Johnson JK (2007) Simulation of adsorption of DNA on carbon nanotubes. J Am Chem Soc 129:10438–10445. doi:10.1021/ja071844m

    Article  Google Scholar 

  94. Ahmed M, Jiang X, Deng Z et al (2009) Cationic glyco-functionalized single-walled carbon nanotubes as efficient gene delivery vehicles. Bioconjug Chem 20:(11)2017–2022. doi: 10.1021/bc900229v

    Google Scholar 

  95. Pantarotto D, Singh R, McCarthy D et al (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl 43(39):5242–5246. doi:10.1021/bc900229v

    Article  Google Scholar 

  96. Qin W, Yang K, Tang H (2011) Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf B Biointerfaces 84(1):206–213. doi:10.1016/j.colsurfb.2011.01.001

    Article  Google Scholar 

  97. Wan Y, Liu G, Zhu X et al (2013) pH induced reversible assembly of DNA wrapped carbon nanotubes. Chem Cent J 7(1):14. doi:10.1186/1752-153X-7-14

    Article  Google Scholar 

  98. Ladeira MS, Andrade VA, Gomes ERM et al (2010) Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes. Nanotechnology 21(38):385101. doi:10.1088/0957-4484/21/38/385101

    Article  Google Scholar 

  99. Brandão HM, Pereira MM, Carvalho BC et al. Multiwalled carbon nanotubos delivery of the GFP gene into bovine embryos. Unpublished manuscript

    Google Scholar 

  100. Nagano M, Shinohara T, Avarbock MR et al (2000) Retrovirus-mediated gene delivery into male germ line stem cells. FEBS Lett 475(1):7–10

    Article  Google Scholar 

  101. Mittermeyer G, Christine CW, Rosenbluth CH et al (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23(4):377–381. doi:10.1089/hum.2011.220

    Article  Google Scholar 

  102. Schirmer JM, Miyagi N, Rao VP et al (2007) Recombinant adeno-associated virus vector for gene transfer to the transplanted rat heart. Transpl Int 20(6):550–557. doi:10.1111/j.1432-2277.2007.00479.x

    Article  Google Scholar 

  103. Kamstock D, Guth A, Elmslie R et al (2006) Liposome-DNA complexes infused intravenously inhibit tumor angiogenesis and elicit antitumor activity in dogs with soft tissue sarcoma. Cancer Gene Ther 13(3):306–317. doi:10.1038/sj.cgt.7700895

    Article  Google Scholar 

  104. Rieth A, Pothier F, Sirard M (2000) Electroporation of bovine spermatozoa to carry DNA containing highly repetitive sequences into oocytes and detection of homologous recombination events. Mol Reprod Dev 57:338–345 I:10.1002/1098-2795(200012)57:4<338:AID-MRD5>3.0.CO;2-K

    Article  Google Scholar 

  105. Toledo JR, Prieto Y, Oramas N et al (2009) Polyethylenimine-based transfection method as a simple and effective way to produce recombinant lentiviral vectors. Appl Biochem Biotechnol 157(3):538–544. doi:10.1007/s12010-008-8381-2

    Article  Google Scholar 

  106. Guo H, Hao R, Wei Y et al (2012) Optimization of electrotransfection conditions of mammalian cells with different biological features. J Membr Biol 245(12):789–795. doi:10.1007/s00232-012-9480-0

    Article  Google Scholar 

  107. Nunes A, Amsharov N, Guo C et al (2010) Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small 6(20):2281–2291. doi:10.1002/smll.201000864

    Article  Google Scholar 

  108. Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7(1):31–34

    Article  Google Scholar 

  109. Trimaille T, Chaix C, Pichot C et al (2003) Polymer functionalized submicrometric emulsions as potential synthetic DNA vectors. J Colloid and Interface Sci 258(1):135–145. doi:10.1016/S0021-9797(02)00069-3

    Article  Google Scholar 

  110. Lesage D, Cao A, Briane D et al (2002) Evaluation and optimization of DNA delivery into gliosarcoma 9L cells by a cholesterol-based cationic liposome. Biochim Biophys Acta 1564(2):393–402

    Article  Google Scholar 

  111. Wong SY, Pelet JM, Putnam D (2007) Polymer systems for gene delivery-past, present, and future. Prog Polym Sci 32:799–837. doi:10.1016/j.progpolymsci.2007.05.007

    Article  Google Scholar 

  112. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302

    Article  Google Scholar 

  113. Joshi RP, Schoenbach KH (2002) Mechanism for membrane electroporation irreversibility under high-intensity, ultrashort electrical pulse conditions. Phys Rev E: Stat, Nonlin, Soft Matter Phys 66:052901. doi:10.1103/PhysRevE.66.052901

    Article  Google Scholar 

  114. Rittner K, Benavente A, Bompard-Sorlet A et al (2002) New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol Ther 5(2):104–114. doi:10.1006/mthe.2002.0523

    Article  Google Scholar 

  115. Cai D, Mataraza JM, Qin ZH et al (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2(6):449–454

    Article  Google Scholar 

  116. Singh R, Pantarotto D, McCarthy D et al (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 127(12):4388–4396. doi:10.1021/ja0441561

    Article  Google Scholar 

  117. Delogu GL, Magrini A, Bergamaschi A et al (2009) Conjugation of antisense oligonucleotides to PEGylated carbon nanotubes enables efficient knockdown of PTPN22 in T lymphocytes. Bioconjug Chem 20(3):427–431. doi:10.1021/bc800540j

    Article  Google Scholar 

  118. Kam SWN, Liu Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed Engl 45:577–581. doi:10.1002/ange.200503389

    Article  Google Scholar 

  119. Yang K, Qin W, Tang H et al (2011) Polyamidoamine dendrimer-functionalized carbon nanotubes-mediated GFP gene transfection for HeLa cells:effects of different types of carbon nanotubes. J Biomed Mater Res A 99(2):231–239

    Article  Google Scholar 

  120. Vanroose G, Nauwynck H, Soom AV et al (2000) Structural aspects of the zona pellucida of in vitro-produced bovine embryos: a scanning electron and confocal laser scanning microscopic study. Biol Reprod 62(2):463–469. doi:10.1095/biolreprod62.2.463

    Article  Google Scholar 

  121. van Berlo D, Clift MJD, Albrecht C et al (2012) Carbon nanotubes: an insight into the mechanisms of their potential genotoxicity. Swiss Med Wkly 142:w13698. doi:10.4414/smw.2012.13698

    Google Scholar 

  122. Toyokuni S (2013) Genotoxicity and carcinogenicity risk of carbon nanotubes. Adv Drug Deliv Rev S0169–409X(13):00149-X. doi:10.1016/j.addr.2013.05.011

    Google Scholar 

  123. Boczkowski J, Lanone S (2012) Genotoxicity and carcinogenicity risk of carbon nanotubes. Adv Drug Deliv Rev 64(15):1694–1699. doi:10.1016/j.addr.2012.05.011

    Article  Google Scholar 

  124. Roman D, Yasmeen A, Mireuta M et al (2013) Significant toxic role for single-walled carbon nanotubes during normal embryogenesis. Nanomedicine 9(7):945–950. doi:10.1016/j.nano.2013.03.010

    Article  Google Scholar 

  125. Cheng J, Cheng SH (2012) Influence of carbon nanotube length on toxicity to zebrafish embryos. Int J Nanomedicine. 7:3731–37319

    Article  Google Scholar 

  126. Cheng J, Flahaut E, Cheng SH (2007) Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26(4):708–716

    Article  Google Scholar 

  127. Cheng J, Chan CM, Veca LM et al (2009) Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubesinto zebrafish (Danio rerio). Toxicol Appl Pharmacol 235(2):216–225

    Article  Google Scholar 

  128. Pacurari M, Yin XJ, Zhao J et al (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116(9):1211–1217. doi:10.1289/ehp.10924

    Article  Google Scholar 

  129. Yang H, Liu C, Yang D et al (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29(1):69–78. doi:10.1002/jat.1385

    Article  Google Scholar 

  130. Lindberg HK, Falck GC, Suhonen S et al (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186(3):166–173. doi:10.1016/j.toxlet.2008.11.019

    Article  Google Scholar 

  131. Pan S, Sardesai NP, Liu H et al (2013) Assessing DNA damage from enzyme-oxidized single-walled carbon nanotubes. Toxicol Res 2:375–378. doi:10.1039/c3tx50022e

    Article  Google Scholar 

  132. Di Giorgio ML, Di Bucchianico S, Ragnelli AM et al (2011) Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res 722(1):20–31. doi:10.1016/j.mrgentox.2011.02.008

    Article  Google Scholar 

  133. Kisin ER, Murray AR, Sargent L et al (2011) Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol Appl Pharmacol 252(1):1–10. doi:10.1016/j.taap.2011.02.001

    Article  Google Scholar 

  134. Patlolla AK, Hussain SM, Schlager JJ et al (2010) Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice. Environ Toxicol 25(6):608–621. doi:10.1002/tox.20621

    Article  Google Scholar 

  135. Ema M, Masumori S, Kobayashi N et al (2013) In vivo comet assay of multi-walled carbon nanotubes using lung cells of rats intratracheally instilled. J Appl Toxicol 33(10):1053–1060. doi:10.1002/jat.2810

    Article  Google Scholar 

  136. Naya M, Kobayashi N, Endo S et al (2012) In vivo genotoxicity study of single-wall carbon nanotubes using comet assay following intratracheal instillation in rats. Regul Toxicol Pharmacol 64(1):124–129. doi:10.1016/j.yrtph.2012.05.020

    Article  Google Scholar 

  137. Yamashita K, Yoshioka Y, Higashisaka K et al (2010) Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation 33(4):276–280. doi:10.1007/s10753-010-9182-7

    Article  Google Scholar 

  138. He X, Young S, Fernback JE et al (2012) Single-Walled Carbon Nanotubes induce fibrogenic effect by disturbing mitochondrial oxidative stress and activating NF-κB signaling. J Clinic Toxicol S:5. doi:10.4172/2161-0495.S5-005

  139. Jacobsen NR, Pojana G, White P et al (2008) Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade markMouse lung epithelial cells. Environ Mol Mutagen 49(6):476–487. doi:10.1002/em.20406

    Article  Google Scholar 

  140. Muller J, Huaux F, Fonseca A et al (2008) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol 21(9):1698–1705. doi:10.1021/tx800101p

    Article  Google Scholar 

  141. Lindberg HK, Falcka GC, Singh R et al (2013) Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Toxicology 313(1):24–37. doi:10.1016/j.tox.2012.12.008

    Article  Google Scholar 

  142. Ponti J, Broggi F, Mariani V et al (2013) Morphological transformation induced by multiwall carbon nanotubes on Balb/3T3 cell model as an in vitro end point of carcinogenic potential. Nanotoxicol 7(2):221–233. doi:10.3109/17435390.2011.652681

    Article  Google Scholar 

  143. Wu P, Yuan S, Ho C et al (2013) Focal amplification of HOXD-Harboring Chromosome Region is implicated in Multiple-Walled Carbon Nanotubes-induced carcinogenicity. Nano Lett 13(10):4632–4641. doi:10.1021/nl401658c

    Article  Google Scholar 

  144. Catalán J, Järventaus H, Vippola M et al (2012) Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro. Nanotoxicol 6(8):825–836. doi:10.3109/17435390.2011.625130

    Article  Google Scholar 

  145. Mohiuddin Keka IS, Evans TJ et al (2013) A novel genotoxicity assay of carbon nanotubes using functional macrophage receptor with collagenous structure (MARCO)-expressing chicken B lymphocytes. Arch Toxicol. doi:10.1007/s00204-013-1084-7

    Google Scholar 

  146. Manshian BB, Jenkins GJS, Williams PM (2013) Single-walled carbon nanotubes: differential genotoxic potential associated with physico-chemical properties. Nanotoxicol 7(2):144–156. doi:10.3109/17435390.2011.647928

    Article  Google Scholar 

  147. Kato T, Totsuka Y, Ishino K et al (2013) Genotoxicity of multi-walled carbon nanotubes in both in vitro and in vivo assay systems. Nanotoxicol 7(4):452–461. doi:10.3109/17435390.2012.674571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto de Mello Brandão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Mello Brandão, H. et al. (2016). Carbon Nanotubes as a DNA Delivery Agent for Generation of Genetically Modified Mammals Embryos. In: Jorio, A. (eds) Bioengineering Applications of Carbon Nanostructures. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-25907-9_3

Download citation

Publish with us

Policies and ethics