Skip to main content

10 Pheromone Action in the Fungal Groups Chytridiomycetes and Zygomycetes and in the Oophytes

  • Chapter
  • First Online:
Growth, Differentiation and Sexuality

Part of the book series: The Mycota ((MYCOTA,volume 1))

Abstract

In the three organismic groups considered, one noticeable observation concerning pheromone action recurs. The sexual interactions in large systematic units are mediated by the same or very similar substances at least at the level of genera and probably families in chytridiomycetes and oophytes and even in a whole class in zygomycetes. Nevertheless, different levels of specificity exist within each group, enabling recognition of a compatible mating partner belonging to the same species. In oophytes and zygomycetes, species specificity is, at a first level of recognition, realised by using different derivatives and isomers of a common basic compound and, subsequently and most probably more specifically, via interactions of individual surface components.

Genetic analysis of the pheromone systems has made considerable progress for zygomycetes. The other two organismic realms are lagging behind with respect to genetic analysis of mating-type communication, but recognising the phytol derivatives in Phytophthora as chemical basis for communication between mating types in oophytes must be appreciated as major achievement in understanding recognition and sexual differentiation in this organismic group. It will be rewarding to reveal the functional connection between these substances and the mating-type locus.

The regulation of several genes involved in pheromone biosynthesis is basically known for zygomycetes, and there are good reasons for interpreting the homeodomain transcription factor genes, identified in many zygomycetes, as the functional principle in the mating-type loci, sexM and sexP. Information on the targets of these transcription factors, however, is still missing. The transcription factors must not necessarily be associated with regulating the communication system at the level of trisporoids, but could be responsible for later steps during the sexual differentiation programme, starting at the level of surface interactions.

Current knowledge on the structure of trisporoid binding proteins, together with the properties of other apocarotenoid binding proteins, will enable us to identify the intracellular events, initiated and regulated by trisporoids. Possibly, the high similarity between various apocarotenoids with regulatory potential, abscisic acid, retinoids and trisporoids will facilitate the definition of functional properties of trisporoid binding proteins and ideally trisporoid receptors. In these respects, regulation mediated by trisporoids could resemble the retinoid situation. These compounds function as intra- and intercellular communication systems in vertebrates, especially in developmental regulatory programmes. Biologically active retinoids bind to nuclear retinoid receptors belonging to the steroid/thyroid hormone nuclear receptor superfamily. Ligand-bound receptor complexes function as transcription factors by binding to specific DNA targets, the retinoid response elements. Comparable effects of intracellularly localised trisporoids, triggered by binding directly to nuclear receptor proteins and thus acting as transcription factors, are conceivable. It will be interesting to check the products of the sexM/sexP loci for interactions with trisporoids. According to signal transduction models along this line, membrane-associated receptors would not necessarily be involved in trisporoid-mediated regulation of sexual reactions in zygomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Tanoury Z, Piskunov A, Rochette-Egly C (2013) Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 54:1761–1775

    CAS  PubMed  Google Scholar 

  • Álvarez MI, Peláez MI, Eslava AP (1980) Recombination between ten markers in Phycomyces. Mol Gen Genet 179:447–552

    Google Scholar 

  • Arsenault GP, Biemann K, Barksdale AW, McMorris TC (1968) The structure of antheridiol, a sex hormone in Achlya ambisexualis. J Am Chem Soc 90:5635–5636

    CAS  Google Scholar 

  • Ashby SF (1929) Strains and taxonomy of Phytophthora palmivora Butler (P. faberi Maubl.). Trans Br Mycol Soc 14:18–38

    Google Scholar 

  • Austin DJ, Bu’Lock JD, Gooday GW (1969) Trisporic acids: sexual hormones from Mucor mucedo and Blakeslea trispora. Nature 223:1178–1179

    CAS  Google Scholar 

  • Austin DJ, Bu’Lock JD, Drake D (1970) The biosynthesis of trisporic acids from β-carotene via retinal and trisporol. Experientia 256:348–349

    Google Scholar 

  • Barksdale AW (1963) The role of hormone A during sexual conjugation in Achlya ambisexualis. Mycologia 55:627–632

    Google Scholar 

  • Barksdale AW (1967) The sexual hormones of the fungus Achlya. Ann N Y Acad Sci 144:313–319

    CAS  PubMed  Google Scholar 

  • Barksdale AW (1969) Sexual hormones of Achlya and other fungi. Science 166:831–837

    CAS  PubMed  Google Scholar 

  • Barksdale AW, Lasure LL (1973) Induction of gametangial phenotypes in Achlya. Bull Torrey Bot Club 100:199–202

    CAS  Google Scholar 

  • Barksdale AW, Lasure LL (1974) Production of hormone B by Achlya heterosexualis. Appl Microbiol 28:544–546

    CAS  PubMed  Google Scholar 

  • Barksdale AW, McMorris TC, Seshadri R, Arunachalam T (1974) Response of Achlya ambisexualis E87 to the hormone antheridiol and certain other steroids. J Gen Microbiol 82:295–299

    Google Scholar 

  • Barrero AF, Herrador MM, Arteaga P, Gil J, González J-A, Alcalde E, Cerdá-Olmedo E (2011) New apocarotenoids and β-carotene cleavage in Blakeslea trispora. Org Biomol Chem 9:7190–7195

    CAS  PubMed  Google Scholar 

  • Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid target genes. Gene 17:1–16

    Google Scholar 

  • Beakes GW, Glockling SL, Sekimoto S (2012) The evolutionary phylogeny of the oomycetes “fungi”. Protoplasma 249:3–19

    PubMed  Google Scholar 

  • Blakeslee AF (1904) Sexual reproduction in the Mucorineae. Proc Am Acad Arts Sci 40:205–319

    Google Scholar 

  • Blomhoff R, Blomhoff HK (2006) Overview of retinoid metabolism and function. J Neurobiol 66:606–630

    CAS  PubMed  Google Scholar 

  • Brunt SA, Silver JC (1986a) Steroid-hormone induced changes in secreted proteins in the filamentous fungus Achlya. Exp Cell Res 165:22–34

    Google Scholar 

  • Brunt SA, Silver JC (1986b) Cellular localization of steroid hormone-regulated proteins during sexual development in Achlya. Exp Cell Res 165:306–319

    CAS  PubMed  Google Scholar 

  • Brunt SA, Silver JC (1987) Steroid hormone-regulated basic proteins in Achlya ambisexualis. Exp Mycol 11:65–69

    CAS  Google Scholar 

  • Brunt SA, Silver JC (1991) Molecular cloning and characterization of two distinct hsp85 sequences from the steroid responsive fungus Achlya ambisexualis. Curr Genet 19:383–388

    CAS  PubMed  Google Scholar 

  • Brunt SA, Silver JC (2004) Molecular cloning and characterization of two different cDNAs encoding the molecular chaperone hsp90 in the oomycete Achlya ambisexualis. Fungal Genet Biol 41:239–252

    CAS  PubMed  Google Scholar 

  • Brunt SA, Riehl R, Silver JC (1990) Steroid hormone regulation of the Achlya ambisexualis 85-kilodalton heat shock protein, a component of the Achlya steroid receptor complex. Mol Cell Biol 10:273–281

    CAS  PubMed  Google Scholar 

  • Brunt SA, Borkar M, Silver JC (1998a) Regulation of hsp90 and hsp70 genes during antheridiol-induced hyphal branching in the oomycetes Achlya ambisexualis. Fungal Genet Biol 24:310–324

    CAS  PubMed  Google Scholar 

  • Brunt SA, Perdew GH, Toft DO, Silver JC (1998b) Hsp90-containing multiprotein complexes in the eukaryotic microbe Achlya. Cell Stress Chaperones 3:44–56

    CAS  PubMed  Google Scholar 

  • Bu’Lock JD, Osagie AU (1973) Prenols and ubiquinones in single-strain and mated cultures of Blakeslea trispora. J Gen Microbiol 76:77–83

    PubMed  Google Scholar 

  • Bu’Lock JD, Drake D, Winstanley DJ (1972) Specificity and transformations of the trisporic acid series of fungal sex hormones. Phytochemistry 11:2011–2018

    Google Scholar 

  • Bu’Lock JD, Jones BE, Quarrie SA, Winskill N (1973) The biochemical basis of sexuality in Mucorales. Naturwissenschaften 60:550–551

    Google Scholar 

  • Bu’Lock JD, Jones BE, Taylor D, Winskill N, Quarrie SA (1974) Sex hormones in Mucorales. The incorporation of C20 and C18 precursors into trisporic acids. J Gen Microbiol 80:301–306

    Google Scholar 

  • Bu’Lock JD, Jones BE, Winskill N (1976) The apocarotenoid system of sex hormones and prohormones in Mucorales. Pure Appl Chem 47:191–202

    Google Scholar 

  • Burgeff H (1924) Untersuchungen über Sexualität und Parasitismus bei Mucorineen. Bot Abhandlungen 4:1–135

    Google Scholar 

  • Burmester A, Richter M, Schultze K, Voelz K, Schachtschabel D, Boland W, Wöstemeyer J, Schimek C (2007) Cleavage of β-carotene as the first step in sexual hormone synthesis in zygomycetes is mediated by a trisporic acid regulated β-carotene oxygenase. Fungal Genet Biol 44:1096–1108

    CAS  PubMed  Google Scholar 

  • Caglioti L, Cainelli G, Camerino B, Mondelli R, Prieto A, Quilico A, Salvatori T, Selva A (1966) The structure of trisporic-C acid. Tetrahedron Suppl 7:175–187

    Google Scholar 

  • Cantino EC, Hyatt MT (1953) Phenotypic “sex” determination in the life history of a new species of Blastocladiella, B. emersonii. Ant v Leeuwenh 19:25–70

    CAS  Google Scholar 

  • Carlile MJ, Machlis L (1965a) A comparative study of the chemotaxis of the motile phases of Allomyces. Am J Bot 52:484–486

    CAS  Google Scholar 

  • Carlile MJ, Machlis L (1965b) The response of male gametes of Allomyces to the sexual hormone sirenin. Am J Bot 52:478–483

    CAS  Google Scholar 

  • Cerdá-Olmedo E, Hüttermann A (1986) Förderung und Hemmung der Carotinsynthese bei Phycomyces durch Aromaten. Angew Bot 69:59–70

    Google Scholar 

  • Chaudhary S, Polaino S, Shakya VPS, Idnurm A (2013) A new genetic linkage map of the zygomycete fungus Phycomyces blakesleeanus. PLoS ONE 8, e58931. doi:10.1371/journal.pone.0058931

    Article  CAS  PubMed  Google Scholar 

  • Chern LL, Ko WH, Tang CS (1996) Factors affecting yields of α hormones of Phytophthora parasitica obtained by adsorption. Can J Microbiol 42:172–176

    CAS  Google Scholar 

  • Chern LL, Tang CS, Ko WH (1999) Chemical characterization of alpha hormones of Phytophthora parasitica. Bot Bull Acad Sinica 40:79–84

    CAS  Google Scholar 

  • Chung HJ, Fu HY, Thomas TL (2005) Abscisic acid-inducible nuclear proteins bind to bipartite promoter elements required for ABA response and embryo-regulated expression of the carrot Dc3 gene. Planta 220:424–433

    CAS  PubMed  Google Scholar 

  • Corrochano LM, Garre V (2010) Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet Biol 47:893–899

    CAS  PubMed  Google Scholar 

  • Cvitanich C, Judelson HS (2003) A gene expressed during sexual and asexual sporulation in Phytophthora infestans is a member of the Puf family of translational regulators. Eukaryot Cell 2:465–473

    CAS  PubMed  Google Scholar 

  • Czempinski K, Kruft V, Wöstemeyer J, Burmester A (1996) 4-Dihydromethyltrisporate dehydrogenase from Mucor mucedo, an enzyme of the sexual hormone pathway: purification, and cloning of the corresponding gene. Microbiology 142:2647–2654

    CAS  PubMed  Google Scholar 

  • den Ende V (1968) Relationship between sexuality and carotene synthesis in Blakeslea trispora. J Bacteriol 96:1298–1303

    PubMed  Google Scholar 

  • Doggett MS, Porter D (1996) Sexual reproduction in the fungal parasite, Zygorhizidium planktonicum. Mycologia 88:720–732

    Google Scholar 

  • Dyer PS, Inderbitzin P, Debuchy R (2016) Mating-type structure, function, regulation and evolution in the pezizomycotina. In: Wendland J (ed) Growth, differentiation and sexuality. Springer, Cham, pp 351–385

    Google Scholar 

  • Ebnet E, Fischer M, Deininger W, Hegemann P (1999) Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri. Plant Cell 11:1473–1484

    CAS  PubMed  Google Scholar 

  • Edwards JA, Mills JS, Sundeen J, Fried JH (1969) The synthesis of the fungal sex hormone antheridiol. J Am Chem Soc 91:1248–1249

    CAS  PubMed  Google Scholar 

  • Ellenberger S, Schuster S, Wöstemeyer J (2013) Correlation between sequence, structure and function for trisporoid processing proteins in the model zygomycete Mucor mucedo. J Theor Biol 320:66–75

    CAS  PubMed  Google Scholar 

  • Ellenberger S, Burmester A, Wöstemeyer J (2014) Complete mitochondrial DNA sequence of the mucoralean fusion parasite Parasitella parasitica. Genome Announc 2:e00912–e00914. doi:10.1128/genomeA.00912-14

    Article  PubMed  Google Scholar 

  • Elliott CG (1972) Sterols and the production of oospores by Phytophthora cactorum. J Gen Microbiol 72:321–327

    CAS  Google Scholar 

  • Elliott CG (1979) Influence of the structure of the sterol molecule on sterol-induced reproduction in Phytophthora infestans. J Gen Microbiol 115:117–126

    CAS  Google Scholar 

  • Elliott CG (1983) Physiology of sexual reproduction in Phytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora, Its biology, taxonomy, ecology and pathology. American Phytopathological Society, St Paul, pp 71–81

    Google Scholar 

  • Elliott CG, Knights BA (1981) Uptake and interconversion of cholesterol and cholesteryl esters by Phytophthora cactorum. Lipids 16:1–7

    PubMed  Google Scholar 

  • Elliott CG, Sansome E (1977) The influence of sterols on meiosis in Phytophthora cactorum. J Gen Microbiol 98:141–145

    CAS  PubMed  Google Scholar 

  • Elliott CG, Hendrie MR, Knights BA (1966) The sterol requirement of Phytophthora cactorum. J Gen Microbiol 42:425–435

    CAS  PubMed  Google Scholar 

  • Eslava AP, Álvarez MI (1996) Genetics of Phycomyces. In: Bos CJ (ed) Fungal genetics: principles and practice. Marcel Dekker, New York, pp 385–406

    Google Scholar 

  • Eslava AP, Álvarez MI, Cerdá-Olmedo E (1974) Regulation of carotene biosynthesis in Phycomyces by vitamin A and β-ionone. Eur J Biochem 48:617–623

    CAS  Google Scholar 

  • Fabritius AL, Judelson HS (1997) Mating type loci segregate aberrantly in Phytophthora infestans but normally in Phytophthora parasitica: implications for models of mating-type determination. Curr Genet 32:60–65

    CAS  PubMed  Google Scholar 

  • Fabritius AL, Judelson HS (2003) A mating-induced protein of Phytophthora infestans is a member of a family of elicitors with divergent structures and stage-specific patterns of expression. Mol Plant Microbe Interact 16:926–935

    CAS  PubMed  Google Scholar 

  • Fabritius AL, Cvitanich C, Judelson HS (2002) Stage-specific gene expression during sexual development in Phytophthora infestans. Mol Microbiol 45:1057–1066

    CAS  PubMed  Google Scholar 

  • Federici BA (1979) Experimental hybridization of Coelomomyces dodgei and Coelomomyces punctatus. Proc Natl Acad Sci USA 76:4425–4428

    CAS  PubMed  Google Scholar 

  • Feofilova EP, Fateeva TV, Arbuzov VA (1976) Mechanism of the action of trisporic acids on carotene-synthesizing enzymes of a (−) strain of Blakeslea trispora. Microbiologiya 45:153–155

    Google Scholar 

  • Gant TG, Noe MC, Corey EJ (1995) The first enantioselective synthesis of the chemotactic factor sirenin by an intramolecular [2 + 1] cyclization using a new chiral catalyst. Tetrahedron Lett 36:8745–8748

    CAS  Google Scholar 

  • Gessler NN, Sokolov AV, Belozerskaya TA (2002) Initial stages of trisporic acid synthesis in Blakeslea trispora. Appl Biochem Microbiol 38:536–543

    CAS  Google Scholar 

  • Gonzalez-Delgado JA, Escobar G, Arteaga JF, Barrero AF (2014) Easy access to a cyclic key intermediate for the synthesis of trisporic acids and related compounds. Molecules 19:1748–1762

    PubMed  Google Scholar 

  • Gooday GW (1978) Functions of trisporic acid. Philos Trans R Soc Lond B 284:509–520

    CAS  Google Scholar 

  • Gooday GW (1983) Hormones and sexuality in fungi. In: Bennett JW, Ciegler A (eds) Secondary metabolism and differentiation in fungi. Dekker, New York, pp 239–266

    Google Scholar 

  • Gooday GW (1994) Hormones in mycelial fungi. In: Wessels JGH, Meinhardt F (eds) The mycota, vol 1, Growth, differentiation and sexuality. Springer, Berlin/New York, pp 401–411

    Google Scholar 

  • Gooday GW, Adams DJ (1993) Sex hormones in fungi. Adv Microb Physiol 34:69–145

    CAS  PubMed  Google Scholar 

  • Govind NS, Cerdá-Olmedo E (1986) Sexual activation of carotenogenesis in Phycomyces blakesleeanus. J Gen Microbiol 132:2775–2780

    CAS  Google Scholar 

  • Gow NAR, Gooday GW (1987) Effects of antheridiol on growth, branching and electrical currents of hyphae of Achlya ambisexualis. J Gen Microbiol 133:3531–3536

    CAS  Google Scholar 

  • Groner B, Hynes N, Sippel AE, Schütz G (1976) Induction of specific proteins in hyphae of Achlya ambisexualis by the steroid hormone antheridiol. Nature 261:599–601

    CAS  PubMed  Google Scholar 

  • Gryganskyi AP, Lee SC, Litvintseva AP, Smith ME, Bonito G, Porter TM, Anishchenko IM, Heitman J, Vilgalys R (2010) Structure, function, and phylogeny of the mating locus in the Rhizopus oryzae complex. PLoS ONE 5, e15273. doi:10.1371/journal.pone. 0015273

    Article  PubMed  Google Scholar 

  • Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, CanoLM GM, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AMV, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JIB, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N, Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J, Grünwald NJ, Horn K, Horner NR, Hu C-H, Huitema E, Jeong D-H, Jones AME, Jones JDG, Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma LJ, MacLean D, Chibucos MC, McDonald H, McWalters J, Meijer HJG, Morgan W, Morris PF, Munro CA, O’Neill C, Ospina-Giraldo M, Pinzón A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadanandom A, Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwessinger B, Seyer L, Sharpe T, Silvar C, Song J, Studholme DJ, Sykes S, Thines M, van de Vondervoort PJI, Phuntumart V, Wawra S, Weide R, Win J, Young C, Zhou S, Fry W, Meyers BC, vanWest P, Ristaino J, Govers F, Birch PRJ, Whisson SC, Judelson HS, Nusbaum C (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398

    CAS  PubMed  Google Scholar 

  • Halary S, Daubois L, Terrat Y, Ellenberger S, Wöstemeyer J, Hijri M (2013) Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont. PLoS ONE 8, e80729. doi:10.1371/journal.pone.0080729

    Article  PubMed  Google Scholar 

  • Hänfler J, Teepe H, Weigel C, Kruft V, Lurz R, Wöstemeyer J (1992) Circular extrachromosomal DNA codes for a surface protein in the (+) mating type of the zygomycete Absidia glauca. Curr Genet 22:319–325

    PubMed  Google Scholar 

  • Harutyunyan SR, Zhao Z, den Hartog T, Bouwmeester K, Minnard AJ, Feringa BL, Govers F (2008) Biologically active Phytophthora mating hormone prepared by catalytic asymmetric total synthesis. Proc Natl Acad Sci USA 105:8507–8512

    CAS  PubMed  Google Scholar 

  • Hendrix JW (1964) Sterol induction of reproduction and stimulation of growth of Pythium and Phytophthora. Science 144:1028–1029

    CAS  PubMed  Google Scholar 

  • Hendrix JW (1965) Influence of sterols on growth and reproduction of Pythium and Phytophthora. Phytopathology 55:790–797

    CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lucking R, Lumbsch HT, Lutzoni F, Matheny PB, Mclaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Koljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schussler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    PubMed  Google Scholar 

  • Hill TW (1996) Electrophoretic characterization of endo-(1,4)-β-glucanases secreted during assimilative growth and antheridiol-induced branching in Achlya ambisexualis. Can J Microbiol 42:557–561

    CAS  Google Scholar 

  • Horgen PA (1977) Cytosole-hormone stimulation of transcription in the aquatic fungus Achlya ambisexualis. Biochem Biophys Res Commun 75:1022–1028

    CAS  PubMed  Google Scholar 

  • Horgen PA, Iwanochko M, Bettiol MF (1983) Antheridiol, RNA polymerase II and sexual development in the aquatic fungus, Achlya. Arch Microbiol 134:314–319

    CAS  Google Scholar 

  • Horowitz DK, Russell PJ (1974) Hormone-induced differentiation of antheridial branches in Achlya ambisexualis: dependence on ribonucleic acid synthesis. Can J Microbiol 20:977–980

    CAS  PubMed  Google Scholar 

  • Horton JS, Horgen PA (1985) Synthesis of an antheridiol-inducible polypeptide during sexual morphogenesis of Achlya ambisexualis. Can J Biochem 63:355–366

    CAS  Google Scholar 

  • Horton JS, Horgen PA (1989) Molecular cloning of cDNAs regulated during steroid-induced sexual differentiation in the aquatic fungus Achlya. Exp Mycol 13:263–273

    CAS  Google Scholar 

  • Idnurm A (2011) Sex determination in the first-described sexual fungus. Eukaryot Cell 10:1485–1491

    CAS  PubMed  Google Scholar 

  • Idnurm A, Walton FJ, Floyd A, Heitman J (2008) Identification of the sex genes in an early diversed fungus. Nature 251:193–198

    Google Scholar 

  • James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R (2006a) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871

    PubMed  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G-H, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgylys R (2006b) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    CAS  PubMed  Google Scholar 

  • Jones BE, Williamson IP, Gooday GW (1981) Sex pheromones in Mucor. In: O’Day DA, Horgen PA (eds) Sexual interactions in eukaryotic microbes. Academic, New York, pp 179–198

    Google Scholar 

  • Judelson HS (1996a) Genetic and physical variability at the mating type locus of the oomycete, Phytophthora infestans. Genetics 144:1005–1013

    CAS  PubMed  Google Scholar 

  • Judelson HS (1996b) Chromosomal heteromorphism linked to the mating type locus of the oomycetes Phytophthora infestans. Mol Gen Genet 252:155–161

    CAS  PubMed  Google Scholar 

  • Judelson HS (2007) Genomics of the plant pathogenic oomycete Phytophthora: insights into biology and evolution. Adv Genet 57:97–141

    CAS  PubMed  Google Scholar 

  • Judelson HS, Spielman LJ, Shattock RC (1995) Genetic mapping and non-mendelian segregation of mating type loci in the oomycete, Phytophthora infestans. Genetics 141:503–512

    CAS  PubMed  Google Scholar 

  • Kedishvili NY (2013) Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res 54:1744–1760

    CAS  PubMed  Google Scholar 

  • Kellner M, Burmester A, Wöstemeyer A, Wöstemeyer J (1991) Sex and parasitism in mucoraceous fungi: transfer of genetic information between Parasitella simplex and its host Absidia glauca. Mycologist 5:120–122

    Google Scholar 

  • Kerwin JL, Duddles ND (1989) Reassessment of the role of phospholipids in sexual reproduction by sterol-auxotrophic fungi. J Bacteriol 171:3831–3839

    CAS  PubMed  Google Scholar 

  • Kerwin JL, Washino RK (1983) Sterol induction of sexual reproduction in Lagenidium giganteum. Exp Mycol 7:109–115

    CAS  Google Scholar 

  • Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE (2005) The structure of a retinal-forming carotenoid oxygenase. Science 308:267–269

    CAS  PubMed  Google Scholar 

  • Knights BA, Elliott CG (1976) Metabolism of Δ5- and Δ5,7- sterols by Phytophthora cactorum. Biochim Biophys Acta 441:341–346

    CAS  PubMed  Google Scholar 

  • Ko WH (1980) Hormonal regulation of sexual reproduction in Phytophthora. J Gen Microbiol 116:459–463

    CAS  Google Scholar 

  • Ko WH (1983) Isolation and partial characterization of α hormones produced by Phytophthora parasitica. J Gen Microbiol 129:1397–1401

    CAS  Google Scholar 

  • Ko WH (1985) Stimulation of sexual reproduction of Phytophthora by phospholipids. J Gen Microbiol 131:2591–2594

    CAS  Google Scholar 

  • Ko WH (1988) Hormonal heterothallism and homothallism in Phytophthora. Annu Rev Phytopathol 26:57–73

    Google Scholar 

  • Lamour KH, Mudge J, Gobena D, Hurtado-Gonzales OP, Schmutz J, Kuo A, Miller NA, Rice BJ, Raffaele S, Cano LM, Bharti AK, Donahoo RS, Finley S, Huitema E, Hulvey J, Platt D, Salamov A, Savidor A, Sharma R, Stam R, Storey D, Thines M, Win J, Haas BJ, Dinwiddie DL, Jenkins J, Knight JR, Affourtit JP, Han CJ, Chertkov O, Lindquist EA, Detter C, Grigoriev IV, Kamoun S, Kingsmore SF (2012) Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Mol Plant-Microbe Interact 25:1350–1360

    CAS  PubMed  Google Scholar 

  • Langcake P (1974) Uptake of sterols by Phytophthora infestans, their intracellular distribution and metabolism. Trans Br Mycol Soc 64:55–65

    Google Scholar 

  • Lee SC, Heitman J (2014) Sex in the mucoralean fungi. Mycoses 57(suppl 3):18–24

    PubMed  Google Scholar 

  • Lee SC, Ni M, Li WJ, Heitman J (2010) The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev 74:298–340

    CAS  PubMed  Google Scholar 

  • Lee SC, Ristaino JB, Heitman J (2012) Parallels in intercellular communication in oomycete and fungal pathogens of plants and humans. PLoS Pathog 8, e1003028. doi:10.1371/journal.ppat.1003028

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Sun S, Heitman J (2014) Unseen sex in ancient virgin fungi. New Phytol 201:3–5

    PubMed  Google Scholar 

  • Li CH, Cervantes M, Springer DJ, Boekhout T, Ruiz-Vazquez RM, Torres-Martinez SR, Heitman J, Lee SC (2011) Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog 7, e1002086. doi:10.1371/journal.ppat.1002086

    Article  CAS  PubMed  Google Scholar 

  • Lucarotti CJ, Federici BA (1984) Ultrastructure of the gametes of Coelomomyces dodgei couch (blastocladiales, chytridiomycetes). Protoplasma 121:77–86

    Google Scholar 

  • Machlis L (1958) Evidence for a sexual hormone in Allomyces. Physiol Plant 11:181–192

    CAS  Google Scholar 

  • Machlis L (1973) Factors affecting the stability of various sirenins and analogues and the uptake of sirenin by the sperm of Allomyces. Plant Physiol 52:527–530

    CAS  PubMed  Google Scholar 

  • Marek LE (1984) Light affects in vitro development of gametangia and sporangia of Monoblepharis macrandra (chytridiomycetes, monoblepharidales). Mycologia 76:420–425

    Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    CAS  PubMed  Google Scholar 

  • McMorris TC (1978) Sex hormones of the aquatic fungus Achlya. Lipids 13:716–722

    CAS  PubMed  Google Scholar 

  • McMorris TC, Barksdale AW (1967) Isolation of a sex hormone from the water mold Achlya ambisexualis. Nature 215:820–821

    Google Scholar 

  • McMorris TC, White RH (1977) Biosynthesis of the oogoniols, steroidal sex hormones of Achlya: the role of fucosterol. Phytochemistry 16:359–362

    CAS  Google Scholar 

  • McMorris TC, Seshadri R, Weihe GR, Arsenault GP, Barksdale AW (1975) Structures of oogoniol-1, −2, and −3, steroidal sex hormones of the water mould, Achlya. J Am Chem Soc 97:2544–2545

    CAS  Google Scholar 

  • McMorris TC, Toft DO, Moon S, Wang W (1993) Biological responses of the female strain Achlya ambisexualis 734 to dehydro-oogoniol and analogues. Phytochemistry 32:833–837

    CAS  Google Scholar 

  • Medina HR, Cerdá-Olmedo E, Al-Babili S (2011) Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces. Mol Microbiol 82:199–208

    CAS  PubMed  Google Scholar 

  • Mehta BJ, Salgado LM, Bejarano ER, Cerdá-Olmedo E (1997) New mutants of Phycomyces blakesleeanus for β-carotene production. Appl Environ Microbiol 63:3657–3661

    CAS  PubMed  Google Scholar 

  • Meissner G, Delbrück M (1968) Carotenes and retinal in Phycomyces mutants. Plant Physiol 43:1279–1283

    CAS  PubMed  Google Scholar 

  • Mesland DAM, Huisman JG, van den Ende H (1974) Volatile sexual hormones in Mucor mucedo. J Gen Microbiol 80:111–117

    Google Scholar 

  • Michalski CJ (1978) Protein synthesis during hormone stimulation in the aquatic fungus, Achlya ambisexualis. Biochem Biophys Res Commun 84:417–427

    CAS  PubMed  Google Scholar 

  • Molli SD, Qi J, Yajima A, Shikai K, Imaoka T, Nukada T, Yabuta G, Ojika M (2012) Structure-activity relationship of α hormones, the mating factors of phytopathogen Phytophthora. Bioorg Med Chem 20:681–686

    CAS  PubMed  Google Scholar 

  • Mullins JT (1979) A freeze-fracture study of hormone-induced branching in the fungus Achlya. Tissue Cell 11:585–595

    CAS  PubMed  Google Scholar 

  • Mullins JT (1994) Hormonal control of sexual dimorphism. In: Wessels JGH, Meinhardt F (eds) The mycota, vol 1, 1st edn, Growth, differentiation and sexuality. Springer, Berlin/New York, pp 413–421

    Google Scholar 

  • Mullins JT, Ellis EA (1974) Sexual morphogenesis in Achlya: ultrastructural basis for the hormonal induction of antheridial hyphae. Proc Natl Acad Sci USA 71:1347–1350

    CAS  PubMed  Google Scholar 

  • Musgrave A, Nieuwenhuis D (1975) Metabolism of radioactive antheridiol by Achlya species. Arch Microbiol 105:313–317

    CAS  Google Scholar 

  • Musgrave A, Ero L, Scheffer R (1978) The self-induced metabolism of antheridiol in water moulds. Acta Bot Neerl 27:397–404

    CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    CAS  PubMed  Google Scholar 

  • Nes WD, Patterson GW, Bean GA (1980) Effect of steric and nuclear changes in steroids and triterpenoids on sexual reproduction in Phytophthora infestans. Plant Physiol 66:1008–1011

    CAS  PubMed  Google Scholar 

  • Nieuwenhuis M, van den Ende H (1975) Sex specificity of hormone synthesis in Mucor mucedo. Arch Microbiol 102:167–169

    CAS  PubMed  Google Scholar 

  • Ojika M, Molli SD, Kanazawa H, Yajima A, Toda K, Nukada T, Mao H, Murata R, Asano T, Qi J, Sakagami Y (2011) The second Phytophthora mating hormone defines interspecies biosynthetic crosstalk. Nat Chem Biol 7:591–593

    CAS  PubMed  Google Scholar 

  • Ootaki T, Yamazaki Y, Noshita T, Takahashi S (1996) Excess carotenoids disturb prospective cell-to-cell recognition system in mating responses of Phycomyces blakesleeanus. Mycoscience 37:427–435

    CAS  Google Scholar 

  • Orejas M, Peláez MI, Álvarez MI, Eslava AP (1987) A genetic map of Phycomyces blakesleeanus. Mol Gen Genet 210:69–76

    CAS  PubMed  Google Scholar 

  • Pelkmans JF, Lugones LG, Wösten HAB (2016) Fruiting body formation in basidiomycetes. In: Wendland J (ed) Growth, differentiation and sexuality. Springer, Cham, pp 387–405

    Google Scholar 

  • Peraza-Reyes L, Malagnac F (2016) Sexual development in fungi. In: Wendland J (ed) Growth, differentiation and sexuality. Springer, Cham, pp 407–455

    Google Scholar 

  • Plattner JJ, Rapoport H (1971) The synthesis of d- and l- sirenin and their absolute configurations. J Am Chem Soc 93:1758–1761

    Google Scholar 

  • Plempel M (1962) Die zygotropische Reaktion der Mucorineen. Planta 58:509–520

    CAS  Google Scholar 

  • Polaino S, Herrador MM, Cerdá-Olmedo E, Barrero AF (2010) Splitting of β-carotene in the sexual interaction of Phycomyces. Org Biomol Chem 8:4229–4231

    CAS  PubMed  Google Scholar 

  • Polaino S, Gonzales-Delgado JA, Arteaga P, Herrador MM, Barrero AF, Cerdá-Olmedo E (2012) Apocarotenoids in the sexual interaction of Phycomyces blakesleeanus. Org Biomol Chem 10:3002–3009

    CAS  PubMed  Google Scholar 

  • Pommerville JC (1978) Analysis of gamete and zygote motility in Allomyces. Exp Cell Res 113:161–172

    CAS  PubMed  Google Scholar 

  • Pommerville JC (1981) The role of sex pheromones in Allomyces. In: O’Day DH, Horgen PH (eds) Sexual interactions in eukaryotic microbes. Academic, New York, pp 52–73

    Google Scholar 

  • Pommerville J, Olson LW (1987) Evidence for a male-produced pheromone in Allomyces macrogynus. Exp Mycol 11:145–248

    Google Scholar 

  • Pommerville JC, Strickland B, Romo D, Harding KE (1988) Effects of analogs of the fungal sexual pheromone sirenin on male gamete motility in Allomyces macrogynus. Plant Physiol 88:139–142

    CAS  PubMed  Google Scholar 

  • Pommerville JC, Strickland JB, Harding KE (1990) Pheromone interactions and ionic communication in gametes of aquatic fungus Allomyces macrogynus. J Chem Ecol 16:121–131

    CAS  PubMed  Google Scholar 

  • Popplestone CR, Unrau AM (1973) Major sterols of Achlya bisexualis. Phytochemistry 12:1131–1133

    CAS  Google Scholar 

  • Popplestone CR, Unrau AM (1974) Studies on the biosynthesis of antheridiol. Can J Chem 52:462–468

    CAS  Google Scholar 

  • Porter TM, Martin W, James TY, Longcore JE, Gleason FH, Adler PH, Letcher PM, Vilgalys R (2011) Molecular phylogeny of the Blastocladiomycota (fungi) based on nuclear ribosomal DNA. Fungal Biol 115:381–392

    CAS  PubMed  Google Scholar 

  • Powell MJ (1979) What are the chromidia of Polyphagus euglenae? Am J Bot 66:1173–1180

    Google Scholar 

  • Prakob W, Judelson HS (2007) Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet Biol 44:726–739

    CAS  PubMed  Google Scholar 

  • Preus MW, McMorris TC (1979) The configuration at C-24 in oogoniol (24R-3β,11α,15β,29-tetrahydroxystigmast-5-en-7-one) and identification of 24(28)-dehydroogoniols as hormones in Achlya. J Am Chem Soc 101:3066–3071

    CAS  Google Scholar 

  • Qi JH, Asano T, Jinno M, Matsui K, Atsumi K, Sakagami Y, Ojika M (2005) Characterization of a Phytophthora mating hormone. Science 309:1828

    CAS  PubMed  Google Scholar 

  • Queiroz EF, Roblot F, Laprévote O, Paulo M d Q, Hocquemiller R (2003) Two unusual acetogenins from the roots of Annona salzmannii. J Nat Prod 66:755–758

    CAS  PubMed  Google Scholar 

  • Quiles-Rosillo MD, Ruiz-Vásquez RM, Torres-Martínez S, Garre V (2005) Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora. Fungal Genet Biol 42:141–153

    CAS  PubMed  Google Scholar 

  • Randall TA, Fong AA, Judelson HS (2003) Chromosomal heteromorphism and an apparent translocation detected using a BAC contig spanning the mating type locus of Phytophthora infestans. Fungal Genet Biol 38:75–84

    CAS  PubMed  Google Scholar 

  • Raper JR (1952) Chemical regulation of sexual processes in the thallophytes. Bot Rev 18:447–545

    CAS  Google Scholar 

  • Remy W, Taylor TN, Hass H (1994) Early devonian fungi: a blastocladalean fungus with sexual reproduction. Am J Bot 81:690–702

    Google Scholar 

  • Riehl RM, Toft DO (1984) Analysis of the steroid receptor of Achlya ambisexualis. J Biol Chem 259:15324–15330

    CAS  PubMed  Google Scholar 

  • Riehl RM, Toft DO, Meyer MD, Carlson GL, McMorris TC (1984) Detection of a pheromone-binding protein in the aquatic fungus Achlya ambisexualis. Exp Cell Res 153:544–549

    CAS  PubMed  Google Scholar 

  • Riehl RM, Sullivan WP, Vroman BT, Bauer VJ, Pearson GR, Toft DO (1985) Immunological evidence that the non-hormone binding component of avian steroid receptor exists in a wide range of tissues and species. Biochemistry 24:6586–6591

    CAS  PubMed  Google Scholar 

  • Riley R, Corradi N (2013) Searching for clues of sexual reproduction in the genomes of arbuscular mycorrhizal fungi. Fungal Ecol 6:44–49

    Google Scholar 

  • Riley R, Charron P, Idnurm A, Farinelli L, Dalpe Y, Martin F, Corradi N (2014) Extreme diversification of the mating type-high-mobility group (MATA-HMG) gene family in a plant-associated arbuscular mycorrhizal fungus. New Phytol 201:254–268

    CAS  PubMed  Google Scholar 

  • Ruiz-Hidalgo MJ, Benito EP, Sandmann G, Eslava AP (1997) The phytoene dehydrogenase gene of Phycomyces: regulation of its expression by blue light and vitamin A. Mol Gen Genet 253:734–744

    CAS  PubMed  Google Scholar 

  • Sahadevan Y, Richter-Fecken M, Kaerger K, Voigt K, Boland W (2013) Early and late trisporoids differentially regulate β-carotene production and gene transcript levels in the mucoralean fungi Blakeslea trispora and Mucor mucedo. Appl Environ Microbiol 79:7466–7475

    CAS  PubMed  Google Scholar 

  • Salgado LM, Cerdá-Olmedo E (1992) Genetic interactions in the regulation of carotenogenesis in Phycomyces. Curr Genet 21:67–71

    CAS  Google Scholar 

  • Salgado LM, Bejarano ER, Cerdá-Olmedo E (1989) Carotene-superproducing mutants of Phycomyces blakesleeanus. Exp Mycol 13:332–336

    CAS  Google Scholar 

  • Salgado LM, Avalos J, Bejarano ER, Cerdá-Olmedo E (1991) Correlation between in vivo and in vitro carotenogenesis in Phycomyces. Phytochemistry 30:2587–2591

    CAS  Google Scholar 

  • Schachtschabel D, Boland W (2007) Efficient generation of a trisporoid library by combination of synthesis and biotransformation. J Org Chem 72:1366–1372

    CAS  PubMed  Google Scholar 

  • Schachtschabel D, Schimek C, Wöstemeyer J, Boland W (2005) Biological activity of trisporoids and trisporoid analogues in Mucor mucedo (−). Phytochemistry 66:1358–1365

    CAS  PubMed  Google Scholar 

  • Schachtschabel D, David A, Menzel K-D, Schimek C, Wöstemeyer J, Boland W (2008) Cooperative biosynthesis of trisporoids by the (+) and (−) mating types of the zygomycete Blakeslea trispora. ChemBioChem 9:3004–3012

    CAS  PubMed  Google Scholar 

  • Schimek C, Wöstemeyer J (2009) Carotene derivatives in sexual communication of zygomycete fungi. Phytochemistry 79:1867–1875

    Google Scholar 

  • Schimek C, Kleppe K, Saleem A-R, Voigt K, Burmester A, Wöstemeyer J (2003) Sexual reactions in Mortierellales are mediated by the trisporic acid system. Mycol Res 107:736–747

    CAS  PubMed  Google Scholar 

  • Schimek C, Petzold A, Schultze K, Wetzel J, Wolschendorf F, Burmester A, Wöstemeyer J (2005) 4-Dihydromethyltrisporate dehydrogenase, an enzyme of the sex-hormone pathway in Mucor mucedo, is constitutively transcribed but its activity is differently regulated in (+) and (−) mating types. Fungal Genet Biol 42:804–812

    CAS  PubMed  Google Scholar 

  • Schmidt AD, Heinekamp T, Matuschek M, Liebmann B, Bollschweiler C, Brakhage AA (2005) Analysis of mating-dependent transcription of Blakeslea trispora carotenoid biosynthesis genes carB and carRA by quantitative real-time PCR. Appl Microbiol Biotechnol 67:549–555

    CAS  PubMed  Google Scholar 

  • Schmoll M, Wang T-F (2016) Sexual development in trichoderma. In: Wendland J (ed) Growth, differentiation and sexuality. Springer, Cham, pp 457–474

    Google Scholar 

  • Schultze K, Schimek C, Wöstemeyer J, Burmester A (2005) Sexuality and parasitism share common regulatory pathways in the fungus Parasitella parasitica. Gene 348:33–44

    CAS  PubMed  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    CAS  PubMed  Google Scholar 

  • Silver JC, Horgen PA (1974) Hormonal regulation of presumptive mRNA in the fungus Achlya ambisexualis. Nature 249:252–254

    CAS  PubMed  Google Scholar 

  • Silver JC, Andrews DR, Pekkala D (1983) Effect of heat-shock on synthesis and phosphorylation of nuclear and cytoplasmic proteins in the fungus Achlya. Can J Biochem Cell Biol 61:447–455

    CAS  PubMed  Google Scholar 

  • Silver JC, Brunt SA, Kyriakopoulou G, Borkar M, Nazarian-Armavil V (1993) Regulation of two different hsp70 transcript populations in steroid hormone-induced fungal development. Dev Genet 14:6–14

    CAS  PubMed  Google Scholar 

  • Sparrow FK (1965) A preliminary note on a population of Monoblepharis. Trans Br Mycol Soc 48:55–58

    Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34

    CAS  PubMed  Google Scholar 

  • Sutherland RB, Horgen PA (1977) Effects of the steroid sex hormone, antheridiol, on the initiation of RNA synthesis in the simple eukaryote, Achlya ambisexualis. J Biol Chem 252:8812–8820

    CAS  PubMed  Google Scholar 

  • Sutter RP (1975) Mutations affecting sexual development in Phycomyces blakesleeanus. Proc Natl Acad Sci USA 72:127–130

    CAS  PubMed  Google Scholar 

  • Sutter RP (1987) Sexual development. In: Lipson E, Cerdá-Olmedo E (eds) Phycomyces. Cold Spring Harbor Press, Cold Spring Harbor, pp 317–336

    Google Scholar 

  • Sutter RP, Whitaker JP (1981a) Sex pheromone metabolism in Blakeslea trispora. Naturwissenschaften 68:147–148

    CAS  Google Scholar 

  • Sutter RP, Whitaker JP (1981b) Zygophore-stimulating precursors (pheromones) of trisporic acids active in (−)-Phycomyces blakesleeanus. J Biol Chem 256:2334–2341

    CAS  PubMed  Google Scholar 

  • Sutter RP, Zawodny PD (1984) Apotrisporin: a major metabolite of Blakeslea trispora. Exp Mycol 8:89–92

    CAS  Google Scholar 

  • Sutter RP, Dadok J, Bothner-By AA, Smith RR, Mishra PK (1989) Cultures of separated mating types of Blakeslea trispora make D and E forms of trisporic acids. Biochemistry 28:4060–4066

    CAS  PubMed  Google Scholar 

  • Sutter RP, Grandin AB, Dye BD, Moore WR (1996) (−) Mating type-specific mutants of Phycomyces defective in sex pheromone biosynthesis. Fungal Genet Biol 20:268–279

    CAS  PubMed  Google Scholar 

  • Tagua VG, Medina HR, Martín-Domínguez R, Eslava AP, Corrochano LM, Cerdá-Olmedo E, Idnurm A (2012) A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanus. Fungal Genet Biol 49:398–404

    CAS  PubMed  Google Scholar 

  • Tan BC, Schwartz SH, Zeevaart JA, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA 94:12235–12240

    CAS  PubMed  Google Scholar 

  • Taylor IB, Burbidge A, Thompson AJ (2000) Control of abscisic acid synthesis. J Exp Bot 51:1563–1574

    CAS  PubMed  Google Scholar 

  • Teepe H, Böttge J-A, Wöstemeyer J (1988) Isolation and electrophoretic analysis of surface proteins of the zygomycete Absidia glauca. FEBS Lett 234:100–106

    CAS  Google Scholar 

  • Thomas DM, Goodwin TW (1967) Studies on carotenogenesis in Blakeslea trispora. I. General observations on synthesis in mated and unmated strains. Phytochemistry 6:355–360

    CAS  Google Scholar 

  • Thomas DDS, McMorris TC (1987) Allomonal functions of steroid hormone, antheridiol, in water mold Achlya. J Chem Ecol 13:1131–1137

    CAS  PubMed  Google Scholar 

  • Thomas DDS, Mullins JT (1967) Role of enzymatic wall-softening in plant morphogenesis: hormonal induction in Achlya. Science 156:84–85

    CAS  Google Scholar 

  • Thomas DS, Mullins JT (1969) Cellulase induction and wall extension in the water mold Achlya ambisexualis. Physiol Plant 22:347–353

    CAS  Google Scholar 

  • Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CMB, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee M-K, McDonald WH, Medina M, Meijer HJG, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JKC, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BWS, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266

    CAS  PubMed  Google Scholar 

  • Vail WJ, Morris C, Lilly VG (1967) Hormone-like substances which increase carotenogenesis in + and – sexes of Choanephora cucurbitarum. Mycologia 59:1069–1074

    CAS  PubMed  Google Scholar 

  • Van den Ende H (1976) Sexual interactions in plants. Academic, London

    Google Scholar 

  • Van den Ende H (1978) Sexual morphogenesis in the Phycomycetes. In: Smith JE, Berry DR (eds) The filamentous fungi. Arnold, London, pp 257–274

    Google Scholar 

  • Van den Ende H, Wiechmann AH, Reyngoud DJ, Hendriks T (1970) Hormonal interactions in Mucor mucedo and Blakeslea trispora. J Bacteriol 101:423–428

    PubMed  Google Scholar 

  • Velayos A, Papp T, Aguilar-Elena R, Fuentes-Vicente M, Eslava AP, Iturriaga EA, Álvarez MI (2003) Expression of the carG gene, encoding geranylgeranyl pyrophosphate synthase, is up-regulated by blue-light in Mucor circinelloides. Curr Genet 43:112–120

    CAS  PubMed  Google Scholar 

  • Vereshchagina OA, Memorskaya AS, Tereshina VM (2012) Trisporoids under the stimulation of carotenogenesis in Blakeslea trispora. Microbiology 81:570–577

    CAS  PubMed  Google Scholar 

  • Viera ALG, Camilo CM (2011) Agrobacterium tumefaciens-mediated transformation of the aquatic fungus Blastocladiella emersonii. Fungal Genet Biol 48:806–811

    Google Scholar 

  • Viera ALG, Gomes SL (2010) Global gene expression analysis during sporulation of the aquatic fungus Blastocladiella emersonii. Eukaryot Cell 9:415–423

    Google Scholar 

  • Von Lintig J, Vogt K (2000) Filling the gap in vitamin A research - molecular identification of an enzyme cleaving beta-carotene to retinal. J Biol Chem 275:11915–11920

    Google Scholar 

  • Wang S-Y, Song P, Chan L-Y, Loh T-P (2010) Total synthesis of Phytophthora mating hormone α1. Org Lett 12:5166–5169

    CAS  PubMed  Google Scholar 

  • Werkman BA (1976) Localization and partial characterization of a sex-specific enzyme in homothallic and heterothallic Mucorales. Arch Microbiol 109:209–213

    CAS  Google Scholar 

  • Werkman BA, van den Ende H (1973) Trisporic acid synthesis in Blakeslea trispora. Interaction between plus and minus mating types. Arch Microbiol 90:365–374

    CAS  Google Scholar 

  • Werkman BA, van den Ende H (1974) Trisporic acid synthesis in homothallic and heterothallic Mucorales. J Gen Microbiol 82:273–278

    Google Scholar 

  • Werner S, Schroeter A, Schimek C, Vlaic S, Wöstemeyer J, Schuster S (2012) Model of the synthesis of trisporic acid in Mucorales showing bistability. IET Syst Biol 6:207–214

    CAS  PubMed  Google Scholar 

  • Wetzel J, Scheibner O, Burmester A, Schimek C, Wöstemeyer J (2009) 4-Dihydrotrisporin-dehydrogenase, an enzyme of the sex hormone pathway of Mucor mucedo: purification, cloning of the corresponding gene, and developmental expression. Eukaryot Cell 8:88–95

    CAS  PubMed  Google Scholar 

  • Wetzel J, Burmester A, Kolbe M, Wöstemeyer J (2012) The mating-related loci sexM and sexP of the zygomycetous fungus Mucor mucedo and their transcriptional regulation by trisporoid pheromones. Microbiology 158:1016–1023

    CAS  PubMed  Google Scholar 

  • Whisler HC, Zebold SL, Shemanchuk JA (1975) Life history of Coelomomyces psorophorae. Proc Natl Acad Sci USA 72:693–696

    CAS  PubMed  Google Scholar 

  • White JD, Takabe K, Prisbylla MP (1985) Stereoselective synthesis of trisporic acids A and B, their methyl esters, and trisporol A and B, hormones and prohormones of mucoraceous fungi. J Org Chem 50:5233–5244

    CAS  Google Scholar 

  • Wöstemeyer A, Teepe H, Wöstemeyer J (1990) Genetic interactions in somatic inter-mating type hybrids of the zygomycete Absidia glauca. Curr Genet 17:163–168

    Google Scholar 

  • Wöstemeyer J, Wöstemeyer A, Burmester A, Czempinski K (1995) Relationships between sexual processes and parasitic interactions in the host-pathogen system Absidia glauca–Parasitella parasitica. Can J Bot 73:S243–S250

    Google Scholar 

  • Wöstemeyer J, Grünler A, Schimek C, Voigt K (2005) Genetic regulation of carotenoid biosynthesis in fungi. In: Arora DK (ed) Applied mycology and biotechnology, vol 5, Genes, genomics and bioinformatics. Elsevier, Dordrecht, pp 257–274

    Google Scholar 

  • Yajima A, Qin Y, Zhou X, Kawanishi N, Xiao X, Wang J, Zhang D, Wu Y, Nukada T, Yabuta G, Qi J, Asano T, Sakagami Y (2008) Synthesis and absolute configuration of hormone α1. Nat Chem Biol 4:235–237

    CAS  PubMed  Google Scholar 

  • Yajima A, Toda K, Molli SD, Ojika M, Nukada T (2011) Syntheses of the four stereoisomers of Phytophthora mating hormone α2 and a concise synthesis of mating hormone α1. Tetrahedron 67:8887–8894

    CAS  Google Scholar 

  • Yakovleva IM, Vakulova LA, Feofilova EP, Bekhtereva MN, Samakhvalov GI (1980) Influence of synthetic compounds structurally close to trisporic acids on carotenogenesis and lipogenesis of the Mucor fungus Blakeslea trispora. Microbiologiya 49:274–278

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wöstemeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wöstemeyer, J. et al. (2016). 10 Pheromone Action in the Fungal Groups Chytridiomycetes and Zygomycetes and in the Oophytes. In: Wendland, J. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-25844-7_10

Download citation

Publish with us

Policies and ethics