Skip to main content

Pediatric Immunology

  • Chapter
  • First Online:
Introduction to Molecular Vaccinology
  • 1526 Accesses

Abstract

Newborn’s immune system is not nearly as effective as an adult’s or even an older child’s, and it takes many months before a newborn can fight off infection as well as someone whose immune system is fully matured. In the meantime, pregnant mothers pass immunoglobulin antibodies from their bloodstream, through the placenta, and to the fetus. These antibodies are an essential part of the fetus’s immune system. Passive transfer of maternal antibodies occurs after the 28th week of gestation. Premature infants of less than 28 weeks gestation are not expected to have significant amounts of maternal antibody and are especially vulnerable to serious bacterial infection, as well as some viral and fungal infections. The fetal immune system develops in a sterile and protected environment and therefore lacks antigenic experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood, N., Siegrist, C.A.: Neonatal immunization: where do we stand? Curr. Opin. Infect. Dis. 24, 190–195 (2011). doi:10.1097/QCO.0b013e328345d563

    Article  PubMed  Google Scholar 

  2. Adkins, B., Leclerc, C., Marshall-Clarke, S.: Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 4, 553–564 (2004). doi:10.1038/nri1394

    Article  CAS  PubMed  Google Scholar 

  3. Dimmitt, R.A., et al.: Role of postnatal acquisition of the intestinal microbiome in the early development of immune function. J. Pediatr. Gastroenterol. Nutr. 51, 262–273 (2010). doi:10.1097/MPG.0b013e3181e1a114

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Scholtens, P.A., Oozeer, R., Martin, R., Amor, K.B., Knol, J.: The early settlers: intestinal microbiology in early life. Annu. Rev. Food Sci. Technol. 3, 425–447 (2012). doi:10.1146/annurev-food-022811-101120

    Article  CAS  PubMed  Google Scholar 

  5. Elahi, S., et al.: Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504, 158–162 (2013). doi:10.1038/nature12675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kung, J.T., Brooks, S.B., Jakway, J.P., Leonard, L.L., Talmage, D.W.: Suppression of in vitro cytotoxic response by macrophages due to induced arginase. J. Exp. Med. 146, 665–672 (1977)

    Article  CAS  PubMed  Google Scholar 

  7. Ygberg, S., Nilsson, A.: The developing immune system – from foetus to toddler. Acta Paediatr. 101, 120–127 (2012). doi:10.1111/j.1651-2227.2011.02494.x

    Article  CAS  PubMed  Google Scholar 

  8. Siegrist, C.A.: Neonatal and early life vaccinology. Vaccine 19, 3331–3346 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Hodgins, D.C., Shewen, P.E.: Vaccination of neonates: problem and issues. Vaccine 30, 1541–1559 (2012). doi:10.1016/j.vaccine.2011.12.047

    Article  CAS  PubMed  Google Scholar 

  10. Ueno, H., et al.: Dendritic cell subsets in health and disease. Immunol. Rev. 219, 118–142 (2007). doi:10.1111/j.1600-065X.2007.00551.x

    Article  CAS  PubMed  Google Scholar 

  11. Teig, N., Moses, D., Gieseler, S., Schauer, U.: Age-related changes in human blood dendritic cell subpopulations. Scand. J. Immunol. 55, 453–457 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Sorg, R.V., Kogler, G., Wernet, P.: Identification of cord blood dendritic cells as an immature CD11c- population. Blood 93, 2302–2307 (1999)

    CAS  PubMed  Google Scholar 

  13. Jones, C.A., Holloway, J.A., Warner, J.O.: Fetal immune responsiveness and routes of allergic sensitization. Pediatr. Allergy Immunol. 13(Suppl 15), 19–22 (2002)

    Article  PubMed  Google Scholar 

  14. Liu, E., Tu, W., Law, H.K., Lau, Y.L.: Decreased yield, phenotypic expression and function of immature monocyte-derived dendritic cells in cord blood. Br. J. Haematol. 113, 240–246 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Langrish, C.L., Buddle, J.C., Thrasher, A.J., Goldblatt, D.: Neonatal dendritic cells are intrinsically biased against Th-1 immune responses. Clin. Exp. Immunol. 128, 118–123 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Wit, D., et al.: Impaired responses to toll-like receptor 4 and toll-like receptor 3 ligands in human cord blood. J. Autoimmun. 21, 277–281 (2003)

    Article  PubMed  Google Scholar 

  17. De Wit, D., et al.: Blood plasmacytoid dendritic cell responses to CpG oligodeoxynucleotides are impaired in human newborns. Blood 103, 1030–1032 (2004). doi:10.1182/blood-2003-04-1216

    Article  PubMed  Google Scholar 

  18. Levy, O., et al.: Selective impairment of TLR-mediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNF-alpha induction by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves the response to R-848. J. Immunol. 173, 4627–4634 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Burl, S., et al.: Age-dependent maturation of Toll-like receptor-mediated cytokine responses in Gambian infants. PLoS One 6, e18185 (2011). doi:10.1371/journal.pone.0018185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nguyen, M., et al.: Acquisition of adult-like TLR4 and TLR9 responses during the first year of life. PLoS One 5, e10407 (2010). doi:10.1371/journal.pone.0010407

    Article  PubMed  PubMed Central  Google Scholar 

  21. Belderbos, M.E., et al.: Skewed pattern of Toll-like receptor 4-mediated cytokine production in human neonatal blood: low LPS-induced IL-12p70 and high IL-10 persist throughout the first month of life. Clin. Immunol. 133, 228–237 (2009). doi:10.1016/j.clim.2009.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Vries, E., et al.: Longitudinal survey of lymphocyte subpopulations in the first year of life. Pediatr. Res. 47, 528–537 (2000)

    Article  PubMed  Google Scholar 

  23. Schatorje, E.J., et al.: Pediatric reference values for the peripheral T-cell compartment. Scand. J. Immunol. 75(4), 436–444 (2011). doi:10.1111/j.1365-3083.2011.02671.x

    Article  Google Scholar 

  24. Schaerli, P., et al.: CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wing, K., et al.: CD4+ CD25+ FOXP3+ regulatory T cells from human thymus and cord blood suppress antigen-specific T cell responses. Immunology 115, 516–525 (2005). doi:10.1111/j.1365-2567.2005.02186.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rabe, H., et al.: Higher proportions of circulating FOXP3+ and CTLA-4+ regulatory T cells are associated with lower fractions of memory CD4+ T cells in infants. J. Leukoc. Biol. 90, 1133–1140 (2011). doi:10.1189/jlb.0511244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jullien, P., et al.: Decreased CD154 expression by neonatal CD4+ T cells is due to limitations in both proximal and distal events of T cell activation. Int. Immunol. 15, 1461–1472 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Fadel, S., Sarzotti, M.: Cellular immune responses in neonates. Int. Rev. Immunol. 19, 173–193 (2000)

    Article  CAS  PubMed  Google Scholar 

  29. Capolunghi, F., et al.: CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J. Immunol. 180, 800–808 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. Morbach, H., Eichhorn, E.M., Liese, J.G., Girschick, H.J.: Reference values for B cell subpopulations from infancy to adulthood. Clin. Exp. Immunol. 162, 271–279 (2010). doi:10.1111/j.1365-2249.2010.04206.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smet, J., Mascart, F., Schandene, L.: Are the reference values of B cell subpopulations used in adults for classification of common variable immunodeficiencies appropriate for children? Clin. Immunol. 138, 266–273 (2011). doi:10.1016/j.clim.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  32. Huck, K., et al.: Memory B-cells in healthy and antibody-deficient children. Clin. Immunol. 131, 50–59 (2009). doi:10.1016/j.clim.2008.11.008

    Article  CAS  PubMed  Google Scholar 

  33. Kruschinski, C., Zidan, M., Debertin, A.S., von Horsten, S., Pabst, R.: Age-dependent development of the splenic marginal zone in human infants is associated with different causes of death. Hum. Pathol. 35, 113–121 (2004)

    Article  PubMed  Google Scholar 

  34. Lundell, A.C., et al.: Infant B cell memory differentiation and early gut bacterial colonization. J. Immunol. 188, 4315–4322 (2012). doi:10.4049/jimmunol.1103223

    Article  CAS  PubMed  Google Scholar 

  35. Weller, S., et al.: Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 104, 3647–3654 (2004). doi:10.1182/blood-2004-01-0346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kruetzmann, S., et al.: Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J. Exp. Med. 197, 939–945 (2003). doi:10.1084/jem.20022020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nilsson, A., et al.: Current chemotherapy protocols for childhood acute lymphoblastic leukemia induce loss of humoral immunity to viral vaccination antigens. Pediatrics 109, e91 (2002)

    Article  PubMed  Google Scholar 

  38. Pihlgren, M., et al.: Reduced ability of neonatal and early-life bone marrow stromal cells to support plasmablast survival. J. Immunol. 176, 165–172 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. Press, J.L.: Neonatal immunity and somatic mutation. Int. Rev. Immunol. 19, 265–287 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. Siegrist, C.A.: The challenges of vaccine responses in early life: selected examples. J. Comp. Pathol. 137(Suppl 1), S4–S9 (2007). doi:10.1016/j.jcpa.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  41. Tasker, L., Marshall-Clarke, S.: Immature B cells from neonatal mice show a selective inability to up-regulate MHC class II expression in response to antigen receptor ligation. Int. Immunol. 9, 475–484 (1997)

    Article  CAS  PubMed  Google Scholar 

  42. Chang, T.L., Capraro, G., Kleinman, R.E., Abbas, A.K.: Anergy in immature B lymphocytes. Differential responses to receptor-mediated stimulation and T helper cells. J. Immunol. 147, 750–756 (1991)

    CAS  PubMed  Google Scholar 

  43. Marshall-Clarke, S., Reen, D., Tasker, L., Hassan, J.: Neonatal immunity: how well has it grown up? Immunol. Today 21, 35–41 (2000)

    Article  CAS  PubMed  Google Scholar 

  44. McHeyzer-Williams, L.J., McHeyzer-Williams, M.G.: Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513 (2005). doi:10.1146/annurev.immunol.23.021704.115732

    Article  CAS  PubMed  Google Scholar 

  45. Pan-Hammarstrom, Q., Zhao, Y., Hammarstrom, L.: Class switch recombination: a comparison between mouse and human. Adv. Immunol. 93, 1–61 (2007). doi:10.1016/S0065-2776(06)93001-6

    Article  PubMed  Google Scholar 

  46. Mortari, F., Wang, J.Y., Schroeder Jr., H.W.: Human cord blood antibody repertoire. Mixed population of VH gene segments and CDR3 distribution in the expressed C alpha and C gamma repertoires. J. Immunol. 150, 1348–1357 (1993)

    CAS  PubMed  Google Scholar 

  47. Ridings, J., et al.: Somatic hypermutation of immunoglobulin genes in human neonates. Clin. Exp. Immunol. 108, 366–374 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ridings, J., Dinan, L., Williams, R., Roberton, D., Zola, H.: Somatic mutation of immunoglobulin V(H)6 genes in human infants. Clin. Exp. Immunol. 114, 33–39 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McGreal, E.P., Hearne, K., Spiller, O.B.: Off to a slow start: under-development of the complement system in term newborns is more substantial following premature birth. Immunobiology 217, 176–186 (2012). doi:10.1016/j.imbio.2011.07.027

    Article  CAS  PubMed  Google Scholar 

  50. Davis, C.A., Vallota, E.H., Forristal, J.: Serum complement levels in infancy: age related changes. Pediatr. Res. 13, 1043–1046 (1979)

    Article  CAS  PubMed  Google Scholar 

  51. Levy, O., et al.: The adenosine system selectively inhibits TLR-mediated TNF-alpha production in the human newborn. J. Immunol. 177, 1956–1966 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Belderbos, M.E., et al.: Neonatal plasma polarizes TLR4-mediated cytokine responses towards low IL-12p70 and high IL-10 production via distinct factors. PLoS One 7, e33419 (2012). doi:10.1371/journal.pone.0033419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Siegrist, C.A.: Mechanisms by which maternal antibodies influence infant vaccine responses: review of hypotheses and definition of main determinants. Vaccine 21, 3406–3412 (2003)

    Article  CAS  PubMed  Google Scholar 

  54. Gruber, C., Nilsson, L., Bjorksten, B.: Do early childhood immunizations influence the development of atopy and do they cause allergic reactions? Pediatr. Allergy Immunol. 12, 296–311 (2001)

    Article  CAS  PubMed  Google Scholar 

  55. Klein, N.P., et al.: Measles-mumps-rubella-varicella combination vaccine and the risk of febrile seizures. Pediatrics 126, e1–e8 (2010). doi:10.1542/peds.2010-0665

    Article  PubMed  Google Scholar 

  56. O'Leary, S.T., et al.: The risk of immune thrombocytopenic purpura after vaccination in children and adolescents. Pediatrics 129, 248–255 (2012). doi:10.1542/peds.2011-1111

    Article  PubMed  Google Scholar 

  57. Partinen, M., et al.: Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS One 7, e33723 (2012). doi:10.1371/journal.pone.0033723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McIntosh, A.M., et al.: Effects of vaccination on onset and outcome of Dravet syndrome: a retrospective study. Lancet Neurol. 9, 592–598 (2010). doi:10.1016/S1474-4422(10)70107-1

    Article  PubMed  Google Scholar 

  59. Uno, Y., Uchiyama, T., Kurosawa, M., Aleksic, B., Ozaki, N.: The combined measles, mumps, and rubella vaccines and the total number of vaccines are not associated with development of autism spectrum disorder: the first case-control study in Asia. Vaccine 30, 4292–4298 (2012). doi:10.1016/j.vaccine.2012.01.093

    Article  PubMed  Google Scholar 

  60. Demicheli, V., Rivetti, A., Debalini, M.G., Di Pietrantonj, C.: Vaccines for measles, mumps and rubella in children. Cochrane Database Syst. Rev. 2, CD004407 (2012). doi:10.1002/14651858.CD004407.pub3

    PubMed  Google Scholar 

  61. Bardage, C., et al.: Neurological and autoimmune disorders after vaccination against pandemic influenza A (H1N1) with a monovalent adjuvanted vaccine: population based cohort study in Stockholm, Sweden. BMJ 343, d5956 (2011). doi:10.1136/bmj.d5956

    Article  PubMed  PubMed Central  Google Scholar 

  62. Klein, N.P., et al.: Measles-containing vaccines and febrile seizures in children age 4 to 6 years. Pediatrics 129, 809–814 (2012). doi:10.1542/peds.2011-3198

    Article  PubMed  Google Scholar 

  63. Oppermann, M., et al.: A(H1N1)v2009: a controlled observational prospective cohort study on vaccine safety in pregnancy. Vaccine 30, 4445–4452 (2012). doi:10.1016/j.vaccine.2012.04.081

    Article  PubMed  Google Scholar 

  64. Fortner, K.B., Kuller, J.A., Rhee, E.J., Edwards, K.M.: Influenza and tetanus, diphtheria, and acellular pertussis vaccinations during pregnancy. Obstet. Gynecol. Surv. 67, 251–257 (2012). doi:10.1097/OGX.0b013e3182524cee

    Article  PubMed  Google Scholar 

  65. Eick, A.A., et al.: Maternal influenza vaccination and effect on influenza virus infection in young infants. Arch. Pediatr. Adolesc. Med. 165, 104–111 (2011). doi:10.1001/archpediatrics.2010.192

    PubMed  Google Scholar 

  66. Quiambao, B.P., et al.: Immunogenicity and reactogenicity of 23-valent pneumococcal polysaccharide vaccine among pregnant Filipino women and placental transfer of antibodies. Vaccine 25, 4470–4477 (2007). doi:10.1016/j.vaccine.2007.03.021

    Article  CAS  PubMed  Google Scholar 

  67. Groneck, L., et al.: Oligoclonal CD4+ T cells promote host memory immune responses to Zwitterionic polysaccharide of Streptococcus pneumoniae. Infect. Immun. 77, 3705–3712 (2009). doi:10.1128/IAI.01492-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Holmlund, E., Nohynek, H., Quiambao, B., Ollgren, J., Kayhty, H.: Mother-infant vaccination with pneumococcal polysaccharide vaccine: persistence of maternal antibodies and responses of infants to vaccination. Vaccine 29, 4565–4575 (2011). doi:10.1016/j.vaccine.2011.04.068

    Article  CAS  PubMed  Google Scholar 

  69. Lopes, C.R., et al.: Ineffectiveness for infants of immunization of mothers with pneumococcal capsular polysaccharide vaccine during pregnancy. Braz. J. Infect. Dis. 13, 104–106 (2009)

    Article  PubMed  Google Scholar 

  70. Gans, H., et al.: Measles and mumps vaccination as a model to investigate the developing immune system: passive and active immunity during the first year of life. Vaccine 21, 3398–3405 (2003)

    Article  CAS  PubMed  Google Scholar 

  71. Leuridan, E., Goeyvaerts, N., Hens, N., Hutse, V., Van Damme, P.: Maternal mumps antibodies in a cohort of children up to the age of 1 year. Eur. J. Pediatr. 171, 1167–1173 (2012). doi:10.1007/s00431-012-1691-y

    Article  CAS  PubMed  Google Scholar 

  72. Shahid, N.S., et al.: Serum, breast milk, and infant antibody after maternal immunization with pneumococcal vaccine. Lancet 346, 1252–1257 (1995)

    Article  CAS  PubMed  Google Scholar 

  73. Redd, S.C., et al.: Comparison of vaccination with measles-mumps-rubella vaccine at 9, 12, and 15 months of age. J. Infect. Dis. 189(Suppl 1), S116–S122 (2004). doi:10.1086/378691

    Article  PubMed  Google Scholar 

  74. Goldacker, S., et al.: Active vaccination in patients with common variable immunodeficiency (CVID). Clin. Immunol. 124, 294–303 (2007). doi:10.1016/j.clim.2007.04.011

    Article  CAS  PubMed  Google Scholar 

  75. Rezaei, N., et al.: Serum bactericidal antibody response to serogroup C polysaccharide meningococcal vaccination in children with primary antibody deficiencies. Vaccine 25, 5308–5314 (2007). doi:10.1016/j.vaccine.2007.05.021

    Article  CAS  PubMed  Google Scholar 

  76. Chovancova, Z., Vlkova, M., Litzman, J., Lokaj, J., Thon, V.: Antibody forming cells and plasmablasts in peripheral blood in CVID patients after vaccination. Vaccine 29, 4142–4150 (2011). doi:10.1016/j.vaccine.2011.03.087

    Article  CAS  PubMed  Google Scholar 

  77. Cagigi, A., Nilsson, A., Pensieroso, S., Chiodi, F.: Dysfunctional B-cell responses during HIV-1 infection: implication for influenza vaccination and highly active antiretroviral therapy. Lancet Infect. Dis. 10, 499–503 (2010). doi:10.1016/S1473-3099(10)70117-1

    Article  PubMed  Google Scholar 

  78. Sutcliffe, C.G., Moss, W.J.: Do children infected with HIV receiving HAART need to be revaccinated? Lancet Infect. Dis. 10, 630–642 (2010). doi:10.1016/S1473-3099(10)70116-X

    Article  PubMed  Google Scholar 

  79. Menson, E.N., et al.: Guidance on vaccination of HIV-infected children in Europe. HIV Med. 13, 333–336; e1–e14 (2012). doi:10.1111/j.1468-1293.2011.00982.x

    Google Scholar 

  80. Patel, S.R., Chisholm, J.C., Heath, P.T.: Vaccinations in children treated with standard-dose cancer therapy or hematopoietic stem cell transplantation. Pediatr. Clin. North Am. 55, 169–186, xi (2008). doi:10.1016/j.pcl.2007.10.012

    Google Scholar 

  81. Brodtman, D.H., Rosenthal, D.W., Redner, A., Lanzkowsky, P., Bonagura, V.R.: Immunodeficiency in children with acute lymphoblastic leukemia after completion of modern aggressive chemotherapeutic regimens. J. Pediatr. 146, 654–661 (2005). doi:10.1016/j.jpeds.2004.12.043

    Article  PubMed  Google Scholar 

  82. Lehrnbecher, T., et al.: Revaccination of children after completion of standard chemotherapy for acute lymphoblastic leukaemia: a pilot study comparing different schedules. Br. J. Haematol. 152, 754–757 (2011). doi:10.1111/j.1365-2141.2010.08522.x

    Article  PubMed  Google Scholar 

  83. Graham, B.S.: Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol. Rev. 239, 149–166 (2011). doi:10.1111/j.1600-065X.2010.00972.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lindell, D.M., et al.: A novel inactivated intranasal respiratory syncytial virus vaccine promotes viral clearance without Th2 associated vaccine-enhanced disease. PLoS One 6, e21823 (2011). doi:10.1371/journal.pone.0021823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mastelic, B., et al.: Mode of action of adjuvants: implications for vaccine safety and design. Biologicals 38, 594–601 (2010). doi:10.1016/j.biologicals.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  86. Garcon, N., Segal, L., Tavares, F., Van Mechelen, M.: The safety evaluation of adjuvants during vaccine development: the AS04 experience. Vaccine 29, 4453–4459 (2011). doi:10.1016/j.vaccine.2011.04.046

    Article  CAS  PubMed  Google Scholar 

  87. Giannini, S.L., et al.: Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 24, 5937–5949 (2006). doi:10.1016/j.vaccine.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  88. Sacarlal, J., et al.: Long-term safety and efficacy of the RTS, S/AS02A malaria vaccine in Mozambican children. J. Infect. Dis. 200, 329–336 (2009). doi:10.1086/600119

    Article  PubMed  Google Scholar 

  89. Bjarnarson, S.P., Adarna, B.C., Benonisson, H., Del Giudice, G., Jonsdottir, I.: The adjuvant LT-K63 can restore delayed maturation of follicular dendritic cells and poor persistence of both protein- and polysaccharide-specific antibody-secreting cells in neonatal mice. J. Immunol. 189, 1265–1273 (2012). doi:10.4049/jimmunol.1200761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. da Hora, V.P., Conceicao, F.R., Dellagostin, O.A., Doolan, D.L.: Non-toxic derivatives of LT as potent adjuvants. Vaccine 29, 1538–1544 (2011). doi:10.1016/j.vaccine.2010.11.091

    Article  PubMed  Google Scholar 

  91. Naniche, D.: Human immunology of measles virus infection. Curr. Top. Microbiol. Immunol. 330, 151–171 (2009)

    CAS  PubMed  Google Scholar 

  92. Ndure, J., Flanagan, K.L.: Targeting regulatory T cells to improve vaccine immunogenicity in early life. Front. Microbiol. 5, 477 (2014). doi:10.3389/fmicb.2014.00477

    Article  PubMed  PubMed Central  Google Scholar 

  93. Basha, S., Surendran, N., Pichichero, M.: Immune responses in neonates. Expert Rev. Clin. Immunol. 10, 1171–1184 (2014). doi:10.1586/1744666X.2014.942288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Flanagan, K.L., Burl, S., Lohman-Payne, B.L., Plebanski, M.: The challenge of assessing infant vaccine responses in resource-poor settings. Expert Rev. Vaccines 9, 665–674 (2010). doi:10.1586/erv.10.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arulanandam, B.P., Van Cleave, V.H., Metzger, D.W.: IL-12 is a potent neonatal vaccine adjuvant. Eur. J. Immunol. 29, 256–264 (1999). doi:10.1002/(SICI)1521-4141(199901)29:01<256::AID-IMMU256>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  96. Henderson, R.A., Watkins, S.C., Flynn, J.L.: Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J. Immunol. 159, 635–643 (1997)

    CAS  PubMed  Google Scholar 

  97. Vekemans, J., et al.: Neonatal bacillus Calmette-Guerin vaccination induces adult-like IFN-gamma production by CD4+ T lymphocytes. Eur. J. Immunol. 31, 1531–1535 (2001). doi:10.1002/1521-4141(200105)31:5<1531::AID-IMMU1531>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giese, M. (2016). Pediatric Immunology. In: Introduction to Molecular Vaccinology. Springer, Cham. https://doi.org/10.1007/978-3-319-25832-4_4

Download citation

Publish with us

Policies and ethics