Skip to main content

Exploring the Potential of Genetic Diversity via Proteomics: Past, Present, and Future Perspectives for Banana

  • Chapter
  • First Online:
Genetic Diversity and Erosion in Plants

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 7))

  • 1055 Accesses

Abstract

KU Leuven is hosting the Global Collection of banana (Musa spp.) managed by Bioversity International for safe storage and distribution. Our mandate is to secure the crop’s gene pool and encourage its use. The latter, however, requires an in-depth knowledge of the variability among the varieties and their potential. Most edible varieties are sterile and triploid involving the parental A genome of Musa acuminata and/or the parental B genome of Musa balbisiana, with hybrid genomes (AAA, AAB or ABB). A very efficient way of characterising the genetic diversity in search of interesting traits is analysing the different genomes via next generation sequencing (NGS) techniques. However, population-based associations to the genome are challenging in banana and need to fall back on crossing fertile inedible diploids. Moreover, proteins and metabolites are the main determinants of a trait/phenotype and finding correlations between the genome or transcriptome and a phenotype can be quite challenging. Therefore, proteomics is quite complementary to characterize the biodiversity and find correlations between a phenotype and the genotype. To characterize and evaluate Musa varieties belonging to different genomic groups and exploring their potential, we have been optimizing proteomics techniques over the years. This chapter gives a brief overview of what proteomics is, its challenges and recent improvements, and applications of proteomics approaches used in banana research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3(1):36–44

    Article  CAS  PubMed  Google Scholar 

  • Buts K, Michielssens S, Hertog ML, Hayakawa E, Cordewener J, America AH, Nicolai BM, Carpentier SC (2014) Improving the identification rate of data independent label-free quantitative proteomics experiments on non-model crops: a case study on apple fruit. J Proteomics 105:31–45

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, America T (2014) Proteome analysis of orphan plant species, fact or fiction? Methods Mol Biol 1072:333–346

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5(10):2497–2507

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, Dens K, Van den houwe I, Van den houwe R, B B (2007) Lyophilization, a practical way to store and transport tissues prior to protein extraction for 2DE analysis? Proteomics 7(S1):64–69

    Article  PubMed  Google Scholar 

  • Carpentier SC, Coemans B, Podevin N, Laukens K, Witters E, Matsumura H, Terauchi R, Swennen R, Panis B (2008a) Functional genomics in a non-model crop: transcriptomics or proteomics? Physiol Plant 133(2):117–130

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B (2008b) Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom Rev 27(4):354–377

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, Swennen R, Panis B (2009) Plant protein sample preparation for 2DE. In: Walker JM (ed) The protein protocols handbook. Humana Press, Totowa, pp 107–117

    Google Scholar 

  • Carpentier SC, Panis B, Renaut J, Samyn B, Vertommen A, Vanhove A, Swennen R, Sergeant K (2011a) The use of 2D-electrophoresis and de novo sequencing to characterize inter- and intra-cultivar protein polymorphisms in an allopolyploid crop. Phytochemistry 72(10):1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, Panis B, Renaut J, Samyn B, Vertommen A, Vanhove AC, Swennen R, Sergeant K (2011b) The use of 2D-electrophoresis and de novo sequencing to characterize inter- and intra-cultivar protein polymorphisms in an allopolyploid crop. Phytochemistry 72(10):1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Chelius D, Bondarenko PV (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res 1(4):317–323

    Article  CAS  PubMed  Google Scholar 

  • Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J (2013) A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genom 14:683

    Article  CAS  Google Scholar 

  • De Langhe E, Hřibová E, Carpentier S, Doležel J, Swennen R (2010) Did backcrossing contribute to the origin of hybrid edible bananas? Ann Bot

    Google Scholar 

  • D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengelle J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, McKain MR, Leebens-Mack J, Burgess D, Freeling M, Mbeguie AMD, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci AM, Weissenbach J, Ruiz M, Glaszmann JC, Quetier F, Yahiaoui N, Wincker P (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217

    Article  PubMed  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312(5771):212–217

    Article  CAS  PubMed  Google Scholar 

  • Ducret A, Van Oostveen I, Eng JK, Yates JR, Aebersold R (1998) High throughput protein characterization by automated reverse-phase chromatography electrospray tandem mass spectrometry. Protein Sci 7(3):706–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekanayake IJ, Ortiz R, Vuylsteke DR (1994) Influence of leaf age, soil moisture, VPD and time of day on leaf conductance of various Musa Genotypes in a humid forest-moist savanna transition site. Ann Bot 74(2):173–178

    Article  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246(4926):64–71

    Article  CAS  PubMed  Google Scholar 

  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100(12):6940–6945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gooding PS, Bird C, Robinson SP (2001) Molecular cloning and characterisation of banana fruit polyphenol oxidase. Planta 213(5):748–757

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  PubMed  Google Scholar 

  • Henry IM, Carpentier SC, Pampurova S, Van Hoylandt A, Panis B, Swennen R, Remy S (2011) Structure and regulation of the Asr gene family in banana. Planta 234(4):785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA 90(11):5011–5015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot 100(5):1073–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal Chem 60(20):2299–2301

    Article  CAS  PubMed  Google Scholar 

  • Kelstrup CD, Young C, Lavallee R, Nielsen ML, Olsen JV (2012) Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. J Proteome Res 11(6):3487–3497

    Article  CAS  PubMed  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis in mouse tissues: a novel approach to test for induced point mutations in mammals. Humangenetik 26:231–243

    CAS  PubMed  Google Scholar 

  • Lebedev AT, Damoc E, Makarov AA, Samgina TY (2014) Discrimination of leucine and isoleucine in peptides sequencing with Orbitrap Fusion mass spectrometer. Anal Chem 86(14):7017–7022

    Article  CAS  PubMed  Google Scholar 

  • Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17(7):676–682

    Article  CAS  PubMed  Google Scholar 

  • Liska AJ, Shevchenko A (2003) Expanding the organismal scope of proteomics: cross-species protein identification by mass spectrometry and its implications. Proteomics 3(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Bell AW, Bergeron JJ, Yanofsky CM, Carrillo B, Beaudrie CE, Kearney RE (2007) Methods for peptide identification by spectral comparison. Proteome Sci 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 78(7):2113–2120

    Article  CAS  PubMed  Google Scholar 

  • Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci U S A 105(47):18132–18138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormack AL, Schieltz DM, Goode B, Yang S, Barnes G, Drubin D, Yates JR (1997) Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal Chem 69(4):767–776

    Article  CAS  PubMed  Google Scholar 

  • Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics 10(9):M111 011015

    Google Scholar 

  • Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4(10):1419–1440

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250(10):4007–4021

    PubMed  PubMed Central  Google Scholar 

  • Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4(9):709–712

    Article  CAS  PubMed  Google Scholar 

  • Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, Remes P, Taylor D, Splendore M, Wouters ER, Senko M, Makarov A, Mann M, Horning S (2009) A dual pressure linear ion trap orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 8(12):2759–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  • Panis B, Totte N, Van Nimmen K, Withers LA, Swennen R (1996) Cryopreservation of banana (Musa spp.) meristems cultures after preculture on sucrose. Plant Sci 21:95–106

    Article  Google Scholar 

  • Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11(11):1475–1488

    Article  PubMed  PubMed Central  Google Scholar 

  • Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK (2006) UPLC/MS (E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom 20(13):1989–1994

    Article  CAS  PubMed  Google Scholar 

  • Samyn B, Sergeant K, Carpentier S, Debyser G, Panis B, Swennen R, Van Beeumen J (2007) Functional proteome analysis of the banana plant (Musa spp.) using de novo sequence analysis of derivatized peptides. J Proteome Res 6(1):70–80

    Article  CAS  PubMed  Google Scholar 

  • Schatz MC, Witkowski J, McCombie WR (2012) Current challenges in de novo plant genome sequencing and assembly. Genome Biol 13(4):243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheele GA (1975) Two-dimensional gel analysis of soluble proteins: charaterization of guinea pig exocrine pancreatic proteins. J Biol Chem 250(14):5375–5385

    CAS  PubMed  Google Scholar 

  • Simmonds NW, Sheppard K (1955) The taxonomy and origins of cultivated bananas. Bot J Linn Soc 55:302–312

    Article  Google Scholar 

  • Thomas DS, Turner D, Eamus D (1998) Independent effects of the environment on the leaf gas exchange of three banana (Musa spp.) cultivars of different genomic constitution. Sci Hortic 75(1–2):41–57

    Article  Google Scholar 

  • Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Tiselius A (1937) Trans Faraday Soc 33:524–531

    Article  CAS  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077

    Article  CAS  PubMed  Google Scholar 

  • Van den houwe I, De Smet K, Tezenas du Montcel H, Swennen R (1995) Variability in storage potential of banana shoot cultures under medium term storage conditions. Plant Cell, Tissue Organ Cult 42:269–274

    Article  Google Scholar 

  • Vanhove A, Garcia S, Swennen R, Panis B, Carpentier SC (2012) Understanding Musa drought stress physiology using an autotrophic growth system. Commun Agric Appl Biol Sci 77(1):89–93

    CAS  PubMed  Google Scholar 

  • Vanhove A, Vermaelen, W, Swennen R, Carpentier S (2015) A look behind the screens: characterization of the HSP70 family during osmotic stress in a non-model crop. J Proteomics, 119:10–20

    Google Scholar 

  • Vertommen A, Panis B, Swennen R, Carpentier SC (2010) Evaluation of chloroform/methanol extraction to facilitate the study of membrane proteins of non-model plants. Planta 231(5):1113–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vertommen A, Møller ALB, Cordewener JHG, Swennen R, Panis B, Finnie C, America AHP, Carpentier SC (2011a) A workflow for peptide-based proteomics in a poorly sequenced plant: a case study on the plasma membrane proteome of banana. J Proteomics 74(8):1218–1229

    Article  CAS  PubMed  Google Scholar 

  • Vertommen A, Panis B, Swennen R, Carpentier SC (2011b) Challenges and solutions for the identification of membrane proteins in non-model plants. J Proteomics 74(8):1165–1181

    Article  CAS  PubMed  Google Scholar 

  • Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from ‘CIALCA’ and the Bioversity International project ‘ITC characterization’ (research projects financed by the Belgian Directorate-General for Development Cooperation (DGDC)) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Carpentier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carpentier, S. (2015). Exploring the Potential of Genetic Diversity via Proteomics: Past, Present, and Future Perspectives for Banana. In: Ahuja, M., Jain, S. (eds) Genetic Diversity and Erosion in Plants. Sustainable Development and Biodiversity, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-25637-5_12

Download citation

Publish with us

Policies and ethics