Skip to main content

EIV Models and Pareto Optimalitity

  • Chapter
  • First Online:
Geospatial Algebraic Computations

Abstract

In some geospatial parametric modeling, the objectives to be minimized are often expressed in different forms, resulting in different parametric values for the estimated parameters at non-zero residuals. Sometimes, these objectives may compete in a Pareto sense, namely a small change in the parameters results in the increase of one objective and a decrease of the other, as is often the case in multiobjective problems. Such is often the case with errors-in-all-variables (EIV) models, e.g., in the geodetic and photogrammetric coordinate transformation problems often solved using total least squares solution (TLS) as opposed to ordinary least squares solution (OLS). In this Chapter, the application of Pareto optimality to solving parameter estimation for linear models with EIV is presented. The method is tested to solve two well known geodetic problems of linear regression and linear conformal coordinate transformation. The results are compared to those from OLS, Reduced Major Axis Regression (TLS solution), and the least geometric mean deviation (GMD) approach. It is shown that the TLS and GMD solutions applied to the EIV models are just special cases of the Pareto optimal solution, since both of them belong to the Pareto-set. The Pareto balanced optimum (PBO) solution as a member of this Pareto optimal solution set has special features, and is numerically equal to the GMD solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyilmaz O (2007) Total least squares solution of coordinate transformation. Surv Rev 39:68–80

    Article  Google Scholar 

  2. Akyilmaz O (2007) Total least squares solution of coordinate transformation. Surv Rev 39(303):68–80(13). doi:10.1179/003962607X165005

    Article  Google Scholar 

  3. Angus D, Deller A (2008) Computational intelligence in radio astronomy: using computational intelligence techniques to tune geodesy models. In: Li X et al (eds) SEAL 2008. LNCS, vol 5361. Springer, Berlin/Heidelberg, pp 615–624

    Google Scholar 

  4. Cai J, Grafarend E (2009) Systematical analysis of the transformation between Gauss-Krueger-coordinate/DHDN and UTM-coordinate/ETRS89 in Baden-Württemberg with different estimation methods. In: Drewes H (ed) Geodetic reference frames, international association of geodesy symposia, vol 134. doi:10.1007/978-3-642-00860-3_32

    Google Scholar 

  5. Censor Y (1977) Pareto optimality in multiobjective problems. Appl Math Optim 4:41–59

    Article  Google Scholar 

  6. Coello CA (2003) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Syst 1(3):269–308

    Article  Google Scholar 

  7. Gau C-Y, Stadtherr MA (2002) Deterministic global optimization for error-in-variables parameter estimation. AIChE J 48(6):1192–1197

    Article  Google Scholar 

  8. Chernov N, Lesort C (2008) Least squares fitting of circles. J Comput Vis 80:167–188

    Article  Google Scholar 

  9. Doicu A, Trautmann T, Schreier F (2010) Numerical regularization for atmospheric inverse problems. Springer, pp 251–270. doi:10.1007/978-3-642-05439-6_8

    Google Scholar 

  10. Esposito WR, Floudas CA (1998) Global parameter estimation in nonlinear algebraic models via global optimization. Comput Chem Eng 22(1):24, 213–220(8)

    Google Scholar 

  11. Ehrgott M (2005) Multicriteria optimization. Springer, Berlin/Heidelberg

    Google Scholar 

  12. Felus YA, Schaffrin B (2005) Performing similarity transformations using the errors-in-variable model. In: ASPRS Annual Conference, Baltimore

    Google Scholar 

  13. Fišerová E, Hron K (2010) Total least squares solution for compositional data using linear models. J Appl Stat 37(7):1137–1152. doi:10.1080/02664760902914532

    Article  Google Scholar 

  14. Geisler J, Trächtler A (2009) Control of the Pareto optimality of systems with unknown disturbances. In: IEEE International Conference on Control and Automation Christchurch, New Zealand, 9–11 Dec 2009, pp 695–700

    Google Scholar 

  15. Gruna R (2010) Evolutionary multiobjective optimization, Wolfram Demonstration Project. www.wolfram.com

    Google Scholar 

  16. Gander W, Golub GH, Strebel R (1994) Least-squares fitting of circles and ellipses. BIT No 43:558–578

    Article  Google Scholar 

  17. Golub GH, Van Loan CF (1980) An analysis of the total least-squares problem. SIAM J Numer Anal 17(6):883–893

    Article  Google Scholar 

  18. Golub GH, Van Loan (1980) An analysis of the total least-squares problem. SIAM J Numer Anal 17(6):883–893

    Article  Google Scholar 

  19. Hochman HM, Rodgers JD (1969) Pareto optimal redistribution. Am Econ Rev 59(4):542–557. Part 1

    Google Scholar 

  20. Hu L, Lin Y, Guo Y (2010) Space registration algorithm based on constrictive total least squares. In: International Conference on Intelligent Computation Technology and Automation, ICICTA, Changsha, vol 3, pp 359–362

    Google Scholar 

  21. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and scalable test problem toolkit. IEEE Trans Evol Comput 10(N0):477–506

    Article  Google Scholar 

  22. Knowles J, Corne D, Deb K (eds) (2008) Multiobjective problem solving from nature. Springer, Berlin/Heidelberg

    Google Scholar 

  23. Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  24. Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91:992–1007. Elsevier

    Google Scholar 

  25. Lin JG (1976) Multiple-objective problems – Pareto-optimal solutions by method of proper equality constraints. IEEE Trans Autom Control AC-21:641–650

    Google Scholar 

  26. Mikhail EM, Bethel JS, McGlone CJ (2001) Introduction to modern photogrammetry. Wiley, New York/Chichester

    Google Scholar 

  27. Nievergelt Y (2000) A tutorial history of least squares with applicatons to astronomy and geodesy. J Comput Appl Math 121:37–72

    Article  Google Scholar 

  28. Neitzel F (2010) Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J Geod. doi:10.1007/s00190-010-0408-0

    Google Scholar 

  29. Pressl B, Mader C, Wieser M (2010) User-specific web-based route planning. In: Miesenberger K et al (eds) ICCHP 2010, Part I. LNCS, vol 6179. Springer, Berlin/Heidelberg, pp 280–287

    Google Scholar 

  30. Petriciolet AB, Bravo-Sánchez UI, Castillo-Borja F, Zapiain-Salinas JG, Soto-Bernal (2007) The performance of simulated annealing in parameter estimation for vapor-liquid equilibrium modeling. Braz J Chem Eng 24(01):151–162

    Google Scholar 

  31. Schaffrin B, Snow K (2009) Total least-squares regularization of Tykhonov type and an ancient racetrack in Corinth. Linear Algebra Appl 432(2010):2061–2076. doi:10.1016/j.laa.2009.09.014

    Article  Google Scholar 

  32. Schaffrin B, Felus YA (2009) An algorithmic approach to the total least-squares problem with linear and quadratic constraints. Studia Geophysica 53(1):1–16. doi:10.1007/s11200-009-0001-2

    Article  Google Scholar 

  33. Schaffrin B, Wieser A (2008) On weighted total least-squares adjustment for linear regression. J Geod 82(7):415–421. doi:10.1007/s00190-007-0190-9

    Article  Google Scholar 

  34. Schaffrin B, Felus YA (2008) Multivariate total least – squares adjustment for empirical affine transformations. In: VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy International Association of Geodesy Symposia, 2008, vol 132, Part III, pp 238–242. doi:10.1007/978-3-540-74584-6_38

    Google Scholar 

  35. Schaffrin B, Felus YA (2008) On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms. J Geod 82(6):373–383. doi:10.1007/s00190-007-0186-5

    Article  Google Scholar 

  36. Schaffrin B (2006) A note on constrained total least-squares estimation. Linear Algebra Appl 417(1):245–258. doi:10.1016/j.laa.2006.03.044

    Article  Google Scholar 

  37. Shanker AP, Zebker H (2010) Edgelist phase unwrapping algorithm for time series InSAR analysis. J Opt Soc Am A 27:605–612

    Article  Google Scholar 

  38. Sonnier DL (2010) A Pareto-optimality based routing and wavelength assignment algorithm for WDM networks. J Comput Sci Coll Arch 25(5):118–123

    Google Scholar 

  39. See Ref. [487]

    Google Scholar 

  40. van Huffel S, Lemmerling P (eds) (2002) Total least squares techniques and errors-in-variables modeling analysis, algorithms and applications. Kluwer Academic, Dordrecht

    Google Scholar 

  41. Warr PG (1982) Pareto optimal redistribution and private charity. J Public Econ 19(1):131–138. doi:10.1016/0047-2727(82)90056-1

    Article  Google Scholar 

  42. Werth S, Güntner A (2010) Calibration of a global hydrological model with GRACE data. System Earth via Geodetic-Geophysical Space Techniques Advanced Technologies in Earth Sciences, 2010, Part 5, 417–426. doi:10.1007/978-3-642-10228-8_3

    Google Scholar 

  43. Wilson PB, Macleod MD (1993) Low implementation cost IIR digital filter design using genetic algorithms. In: IEE/IEEE Workshop on Natural Algorithms in Signal Processing, Chelmsford, pp 4/1–4/8

    Google Scholar 

  44. Zitler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  45. Zwanzig S (2006) On an application of deconvolution techniques to local linear regression with errors in variables. Department of Mathematics Uppsala University, U.U.D.M. report 2006:12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awange, J.L., Paláncz, B. (2016). EIV Models and Pareto Optimalitity. In: Geospatial Algebraic Computations. Springer, Cham. https://doi.org/10.1007/978-3-319-25465-4_10

Download citation

Publish with us

Policies and ethics