Skip to main content

A Fast Network-Decomposition Algorithm and Its Applications to Constant-Time Distributed Computation

(Extended Abstract)

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9439))

Abstract

A partition (C 1,C 2,...,C q ) of G = (V,E) into clusters of strong (respectively, weak) diameter d, such that the supergraph obtained by contracting each C i is ℓ-colorable is called a strong (resp., weak) (d, ℓ)-network-decomposition. Network-decompositions were introduced in a seminal paper by Awerbuch, Goldberg, Luby and Plotkin in 1989. Awerbuch et al. showed that strong \((exp\{O(\sqrt{ \log n \log \log n})\}\), \(exp\{O(\sqrt{ \log n \log \log n})\})\)-network-decompositions can be computed in distributed deterministic time \(exp\{O(\sqrt{ \log n \log \log n})\}\). Even more importantly, they demonstrated that network-decompositions can be used for a great variety of applications in the message-passing model of distributed computing. Much more recently Barenboim (2012) devised a distributed randomized constant-time algorithm for computing strong network decompositions with d = O(1). However, the parameter ℓ in his result is O(n 1/2 + ε).

In this paper we drastically improve the result of Barenboim and devise a distributed randomized constant-time algorithm for computing strong (O(1), O(n ε))-network-decompositions. As a corollary we derive a constant-time randomized O(n ε)-approximation algorithm for the distributed minimum coloring problem. This improves the best previously-known O(n 1/2 + ε) approximation guarantee. We also derive other improved distributed algorithms for a variety of problems.

Most notably, for the extremely well-studied distributed minimum dominating set problem currently there is no known deterministic polylogarithmic -time algorithm. We devise a deterministic polylogarithmic-time approximation algorithm for this problem, addressing an open problem of Lenzen and Wattenhofer (2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Fast Distributed Network Decompositions and Covers. J. of Parallel and Distr. Computing 39(2), 105–114 (1996)

    Article  MATH  Google Scholar 

  2. Ajtai, M., Komlos, J., Szemeredi, E.: A note on Ramsey numbers. Journal of Combinatorial Theory, Series A 29, 354–360 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.: Network decomposition and locality in distributed computation. In: Proc. of the 30th Annual Symposium on Foundations of Computer Science, pp. 364–369 (1989)

    Google Scholar 

  4. Awerbuch, B., Peleg, D.: Sparse partitions. In: Proc. of the 31st IEEE Symp. on Foundations of Computer Science, pp. 503–513 (1990)

    Google Scholar 

  5. Barenboim, L.: On the locality of some NP-complete problems. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 403–415. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition. In: Proc. of the 27th ACM Symp. on Principles of Distributed Computing, pp. 25–34 (2008)

    Google Scholar 

  7. Barenboim, L., Elkin, M.: Distributed (Δ + 1)-coloring in linear (in Δ) time. In: Proc. of the 41st ACM Symp. on Theory of Computing, pp. 111–120 (2009)

    Google Scholar 

  8. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polylogarithmic time. In: Proc. 29th ACM Symp. on Principles of Distributed Computing, pp. 410–419 (2010)

    Google Scholar 

  9. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent Developments. Morgan-Claypool Synthesis Lectures on Distributed Computing Theory (2013)

    Google Scholar 

  10. Barenboim, L., Elkin, M., Gavoille, C.: A Fast Network-Decomposition Algorithm and its Applications to Constant-Time Distributed Computation, http://arxiv.org/abs/1505.05697

  11. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: Proc. of the 53rd Annual Symposium on Foundations of Computer Science, pp. 321–330 (2012)

    Google Scholar 

  12. Baswana, S., Sen, S.: A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs. Random Structures and Algorithms 30(4), 532–563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., Yaroslavtsev, G.: Improved approximation for the directed spanner problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 1–12. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Bisht, T., Kothapalli, K., Pemmaraju, S.: Super-fast t-ruling sets (Brief Announcement). In: Proc. of the 33th ACM Symposium on Principles of Distributed Computing, pp. 379–381 (2014)

    Google Scholar 

  15. Bollobas, B.: Extremal Graph Theory. Dover Publications (2004)

    Google Scholar 

  16. Busch, C., Dutta, C., Radhakrishnan, J., Rajaraman, R., Srinivasagopalan, S.: Split and join: strong partitions and universal Steiner trees for graphs. In: Proc. of 53rd Annual IEEE Symp. on Foundations of Computer Science, pp. 81–90 (2012)

    Google Scholar 

  17. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Information and Control 70(1), 32–53 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: On the locality of distributed sparse spanner construction. In: Proc. of the 27th ACM Symp. on Principles of Distributed Computing, pp. 273–282 (2008)

    Google Scholar 

  19. Dinitz, M., Krauthgamer, R.: Directed spanners via flow-based linear programs. In: Proc. of the 43rd ACM Symp. on Theory of Computing, pp. 323–332 (2011)

    Google Scholar 

  20. Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., Srinivasan, A.: Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons. Journal of Computer and System Sciences 71(4), 467–479 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Elkin, M.: A near-optimal distributed fully dynamic algorithm for maintaining sparse spanners. In: Proc. of the 26th ACM Symp. on Principles of Distributed Computing, pp. 185–194 (2007)

    Google Scholar 

  22. Elkin, M., Peleg, D.: The client-server 2-spanner problem with applications to network design. In: Proc. of the 8th International Colloquium on Structural Information and Communication Complexity, pp. 117–132 (2001)

    Google Scholar 

  23. Elkin, M., Peleg, D.: Approximating k-spanner problems for k ≥ 2. Theoretical Computer Science 337(1-3), 249–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Erdős, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of r others. Israel Journal of Mathematics 51, 79–89 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feige, U., Kilian, J.: Zero Knowledge and the chromatic number. Journal of Computer and System Sciences 57, 187–199 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gfeller, B., Vicari, E.: A randomized distributed algorithm for the maximal independent set problem in growth-bounded graphs. In: Proc. of the 26th ACM Symp. on Principles of Distributed Computing, pp. 53–60 (2007)

    Google Scholar 

  27. Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-breaking in sparse graphs. SIAM Journal on Discrete Mathematics 1(4), 434–446 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hastad, J.: Clique is Hard to Approximate Within n 1 − ε. In: Proc. of the 37th Annual Symposium on Foundations of Computer Science, pp. 627–636 (1996)

    Google Scholar 

  29. Jia, L., Rajaraman, R., Suel, R.: An efficient distributed algorithm for constructing small dominating sets. In: Proc. of the 20th ACM Symp. on Principles of Distributed Computing, pp. 33–42 (2001)

    Google Scholar 

  30. Kim, J.H.: The Ramsey number R(3,t) has order of magnitude t 2/ logt. Random Structures and Algorithms 7, 173–207 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. Journal of Algorithms 17(2), 222–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kothapalli, K., Pemmaraju, S.: Super-fast 3-ruling sets. In: Proc. of the 32nd IARCS International Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 136–147 (2012)

    Google Scholar 

  33. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: Proc. of the 21st ACM Symposium on Parallel Algorithms and Architectures, pp. 138–144 (2009)

    Google Scholar 

  34. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth. In: Proc. of the 24th ACM Symp. on Principles of Distributed Computing, pp. 60–68 (2005)

    Google Scholar 

  35. Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating set approximation. Distributed Computing 17(4), 303–310 (2005)

    Article  MATH  Google Scholar 

  36. Kutten, S., Nanongkai, D., Pandurangan, G., Robinson, P.: Distributed symmetry breaking in hypergraphs. In: Proc. of the 28th International Symposium on Distributed Computing, pp. 469–483 (2014)

    Google Scholar 

  37. Lenzen, C., Oswald, Y., Wattenhofer, R.: What can be approximated locally? case study: dominating sets in planar graphs. In: Proc 20th ACM Symp. on Parallelism in Algorithms and Architectures, pp. 46–54 (2010). See also TIK report number 331, ETH Zurich, 2010

    Google Scholar 

  38. Lenzen, C., Wattenhofer, R.: Minimum dominating set approximation in graphs of bounded arboricity. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 510–524. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  39. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Linial, N., Saks, M.: Low diameter graph decomposition. Combinatorica 13, 441–454 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing 15, 1036–1053 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press (2005)

    Google Scholar 

  43. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths. In: Proc. of the 46th ACM Symp. on Theory of Computing, pp. 565–573 (2014)

    Google Scholar 

  44. Naor, M., Stockmeyer, L.: What can be computed locally? In: Proc. 25th ACM Symp. on Theory of Computing, pp. 184–193 (1993)

    Google Scholar 

  45. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks. Distributed Computing 14(2), 97–100 (2001)

    Article  Google Scholar 

  46. Panconesi, A., Srinivasan, A.: On the complexity of distributed network decomposition. Journal of Algorithms 20(2), 581–592 (1995)

    MathSciNet  Google Scholar 

  47. Saket, R., Sviridenko, M.: New and improved bounds for the minimum set cover problem. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM 2012. LNCS, vol. 7408, pp. 288–300. Springer, Heidelberg (2012)

    Google Scholar 

  48. Schneider, J., Elkin, M., Wattenhofer, R.: Symmetry breaking depending on the chromatic number or the neighborhood growth. Theoretical Computer Science 509, 40–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set algorithm for growth bounded graphs. In: Proc. of the 27th ACM Symp. on Principles of Distributed Computing, pp. 35–44 (2008)

    Google Scholar 

  50. Zuckerman, D.: Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number. Theory of Computing 3(1), 103–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. http://www.disco.ethz.ch/lectures/ss04/distcomp/lecture/chapter12.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Barenboim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Barenboim, L., Elkin, M., Gavoille, C. (2015). A Fast Network-Decomposition Algorithm and Its Applications to Constant-Time Distributed Computation. In: Scheideler, C. (eds) Structural Information and Communication Complexity. SIROCCO 2015. Lecture Notes in Computer Science(), vol 9439. Springer, Cham. https://doi.org/10.1007/978-3-319-25258-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25258-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25257-5

  • Online ISBN: 978-3-319-25258-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics