Skip to main content

Modelling of Evolution Small-Scale Magnetohydrodynamic Turbulence Depending on the Magnetic Viscosity of the Environment

  • Conference paper
  • First Online:
Mathematical Modeling of Technological Processes (CITech 2015)

Abstract

The present work is devoted to study of self-excitation of magnetic field and the motion of the conducting fluid at the same time taking into account acting forces. The idea is to specify in the phase space of initial conditions for the velocity field and magnetic field, which satisfy the condition of continuity. Given initial condition with the phase space is translated into physical space using a Fourier transform. The obtained velocity field and magnetic field are used as initial conditions for the filtered MHD equations. Further is solved the unsteady three-dimensional equation of magnetohydrodynamics to simulate homogeneous MHD turbulence decay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Batchelor, G.K.: On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. Roy. Soc. A 201(16), 405–416 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  2. Schumann, U.: Numerical simulation of the transition from three- to two-dimensional turbulence under a uniform magnetic field. J. Fluid Mech. 74, 31–58 (1976)

    Article  MATH  Google Scholar 

  3. Moffatt, H.K.: On the suppression of turbulence by a uniform magnetic field. J. Fluid Mech. 28, 571–592 (1967)

    Article  Google Scholar 

  4. Hossain, M.: Inverse energy cascades in three dimensional turbulence. Phys. Fluids B. 3(2), 511–514 (1991)

    Article  Google Scholar 

  5. Zikanov, O., Thess, A.: Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358(1), 299–333 (1998)

    Article  MATH  Google Scholar 

  6. Vorobev, A., Zikanov, O., Davidson, P.A., Knaepen, B.: Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Fluid 17 (2005)

    Google Scholar 

  7. Burattini, P., Zikanov, O., Knaepen, B.: Decay of magnetohydrodynamic turbulence at low magnetic Reynolds number. J. Fluid Mech. 657, 502–538 (2010)

    Article  MATH  Google Scholar 

  8. Knaepen, B., Kassinos, S., Carati, D.: Magnetohydrodynamic turbulence at moderate magnetic Reynolds number. J. Fluid Mech. 513(3), 199–220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Knaepen, B., Moin, P.: Large-eddy simulation of conductive flows at low magnetic Reynolds number. Physics of Fluids 16, 1255–1261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sahoo, G., Perlekar, P., Panditn, R.: Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence. New J. Phys. 13, 1367–2630 (2011)

    Article  Google Scholar 

  11. Ievlev, V.M.: The method of fractional steps for solution of problems of mathematical physics. Science Nauka, Moscow (1975)

    Google Scholar 

  12. Sirovich, L., Smith, L., Yakhot, V.: Energy spectrum of homogeneous and isotropic turbulence in far dissipation range. Physical Review Letters 72(3), 344–347 (1994)

    Article  Google Scholar 

  13. Zhumagulov, B., Abdibekov, U., Zhakebaev, D., Zhubat, K.: Modelling isotropic turbulence decay based on the LES. Mathematical modelling 25(1), 18–32 (2013)

    MATH  Google Scholar 

  14. Abdibekov, U.S., Zhakebaev, D.B.: Modelling of the decay of isotropic turbulence by the LES. J. Phys.: Conf. Ser. 318 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aigerim Abdibekova or Dauren Zhakebayev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Abdibekova, A., Zhumagulov, B., Zhakebayev, D. (2015). Modelling of Evolution Small-Scale Magnetohydrodynamic Turbulence Depending on the Magnetic Viscosity of the Environment. In: Danaev, N., Shokin, Y., Darkhan, AZ. (eds) Mathematical Modeling of Technological Processes. CITech 2015. Communications in Computer and Information Science, vol 549. Springer, Cham. https://doi.org/10.1007/978-3-319-25058-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25058-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25057-1

  • Online ISBN: 978-3-319-25058-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics