Skip to main content

Epigenetic and Cancer: An Evaluation of the Impact of Dietary Components

  • Chapter
  • First Online:
Epigenetic Advancements in Cancer

Abstract

Epigenetics is an area of research that has recently gained much attention from scientists. Epigenetic processes can induce changes within an organism without altering its genetic makeup. More interestingly, epigenetic mechanisms have the strong ability to modulate gene expression without directly altering the sequences of DNA bases. Dietary compounds consist of several bioactive constituents, which actively regulate different molecular targets involved in tumorigenesis. Keeping these facts in view, we provide evidence that these dietary components (e.g. resveratrol (RES), curcumin, genistein, polyphenols and sulforaphane) might interact with various epigenetic targets in cancer therapeutics. These bioactive compounds can modulate normal DNA methylation and histone acetylation patterns, which are essential for the activation of cancer fighting genes. Compounds, such as the ones listed above, induce epigenetic changes associated with the expression of tumor suppressor genes, such as p53, and inhibition of tumor promoting genes such as telomerase reverse transcriptase during tumor progression. Therefore, in this chapter, we present considerable evidence that bioactive compounds and their epigenetic targets are linked with cancer therapeutics, which may open the door to novel drug discovery and development. Remarkable improvements in our understanding of basic epigenetic mechanisms coupled with the rapid progress in the development of powerful new technologies hold great promise for the advancement of cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bobrowska-Korczak B, Skrajnowska D, Tokarz A. Effect of zinc and copper supplementation on the prognostic value of urinary 5-methyl-2′-deoxycytidine in DMBA-induced carcinogenesis in rats. Cancer Biomark. 2013;13(6):403–10.

    CAS  PubMed  Google Scholar 

  2. Fernandez AF, Fraga MF. The effects of the dietary polyphenol resveratrol on human healthy aging and lifespan. Epigenetics. 2011;6(7):870–4.

    Article  CAS  PubMed  Google Scholar 

  3. Mai A. Small-molecule chromatin-modifying agents: therapeutic applications. Epigenomics. 2010;2(2):307–24.

    Article  CAS  PubMed  Google Scholar 

  4. Martin SL, Hardy TM, Tollefsbol TO. Medicinal chemistry of the epigenetic diet and caloric restriction. Curr Med Chem. 2013;20(32):4050–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meeran SM, Ahmed A, Tollefsbol TO. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics. 2010;1(3–4):101–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu ML, et al. Short-term resveratrol exposure causes in vitro and in vivo growth inhibition and apoptosis of bladder cancer cells. PLoS One. 2014;9(2), e89806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhang P, et al. Biological significance and therapeutic implication of resveratrol-inhibited Wnt, Notch and STAT3 signaling in cervical cancer cells. Genes Cancer. 2014;5(5–6):154–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhong LX, et al. Inhibition of STAT3 signaling as critical molecular event in resveratrol-suppressed ovarian cancer cells. J Ovarian Res. 2015;8(1):25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Arumuggam N, Bhowmick NA, Rupasinghe HP. A review: phytochemicals targeting JAK/STAT signaling and IDO expression in cancer. Phytother Res. 2015;29(6):805–17.

    Article  CAS  PubMed  Google Scholar 

  10. De Fabiani E, et al. When food meets man: the contribution of epigenetics to health. Nutrients. 2010;2(5):551–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gao Y, Tollefsbol TO. Impact of epigenetic dietary components on cancer through histone modifications. Curr Med Chem. 2015;22(17):2051–64.

    Article  CAS  PubMed  Google Scholar 

  12. Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3(4):503–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barber BA, Rastegar M. Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann Anat. 2010;192(5):261–74.

    Article  CAS  PubMed  Google Scholar 

  14. Berdasco M, et al. Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci U S A. 2009;106(51):21830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choudhuri S, Cui Y, Klaassen CD. Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicol Appl Pharmacol. 2010;245(3):378–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gerhauser C. Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem. 2013;329:73–132.

    Article  CAS  PubMed  Google Scholar 

  17. Herceg Z. Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis. 2007;22(2):91–103.

    Article  CAS  PubMed  Google Scholar 

  18. Huang J, Plass C, Gerhauser C. Cancer chemoprevention by targeting the epigenome. Curr Drug Targets. 2011;12(13):1925–56.

    Article  CAS  PubMed  Google Scholar 

  19. Liu S. Epigenetics advancing personalized nanomedicine in cancer therapy. Adv Drug Deliv Rev. 2012;64(13):1532–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park LK, Friso S, Choi SW. Nutritional influences on epigenetics and age-related disease. Proc Nutr Soc. 2012;71(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  21. Rouhi A, et al. MiRNAs, epigenetics, and cancer. Mamm Genome. 2008;19(7–8):517–25.

    Article  CAS  PubMed  Google Scholar 

  22. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shu XH, et al. Metabolic patterns and biotransformation activities of resveratrol in human glioblastoma cells: relevance with therapeutic efficacies. PLoS One. 2011;6(11), e27484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stefanska B, et al. Epigenetic mechanisms in anti-cancer actions of bioactive food components—the implications in cancer prevention. Br J Pharmacol. 2012;167(2):279–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolff GL, et al. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 1998;12(11):949–57.

    CAS  PubMed  Google Scholar 

  26. Holliday R. DNA methylation and epigenetic inheritance. Philos Trans R Soc Lond B Biol Sci. 1990;326(1235):329–38.

    Article  CAS  PubMed  Google Scholar 

  27. Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther. 2009;8(6):1409–20.

    Article  CAS  PubMed  Google Scholar 

  28. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59.

    Article  CAS  PubMed  Google Scholar 

  29. Ducasse M, Brown MA. Epigenetic aberrations and cancer. Mol Cancer. 2006;5:60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Suter MA, Aagaard-Tillery KM. Environmental influences on epigenetic profiles. Semin Reprod Med. 2009;27(5):380–90.

    Article  CAS  PubMed  Google Scholar 

  31. Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol. 2007;1(1):26–41.

    Article  CAS  PubMed  Google Scholar 

  32. Herranz M, Esteller M. DNA methylation and histone modifications in patients with cancer: potential prognostic and therapeutic targets. Methods Mol Biol. 2007;361:25–62.

    CAS  PubMed  Google Scholar 

  33. Kondo Y, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet. 2008;40(6):741–50.

    Article  CAS  PubMed  Google Scholar 

  34. Majid S, et al. Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res. 2008;68(8):2736–44.

    Article  CAS  PubMed  Google Scholar 

  35. Landis-Piwowar KR, Dou QP. Polyphenols: biological activities, molecular targets, and the effect of methylation. Curr Mol Pharmacol. 2008;1(3):233–43.

    Article  CAS  PubMed  Google Scholar 

  36. Nakagawa Y, et al. Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes. J Mol Cell Cardiol. 2006;41(6):1010–22.

    Article  CAS  PubMed  Google Scholar 

  37. Guil S, Esteller M. DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol. 2009;41(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  38. Calin GA, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A. 2004;101(32):11755–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Calin GA, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fabbri M, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. 2007;104(40):15805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Migicovsky Z, Kovalchuk I. Changes to DNA methylation and homologous recombination frequency in the progeny of stressed plants. Biochem Cell Biol. 2013;91(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  43. Sanchez-Romero MA, Cota I, Casadesus J. DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol. 2015;25:9–16.

    Article  CAS  PubMed  Google Scholar 

  44. Doi A, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41(12):1350–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feng W, et al. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer. 2008;112(7):1489–502.

    Article  CAS  PubMed  Google Scholar 

  46. Fujii S, et al. Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem. 2008;283(25):17324–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khan SI, et al. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol. 2012;25(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  48. Papoutsis AJ, et al. Gestational exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin induces BRCA-1 promoter hypermethylation and reduces BRCA-1 expression in mammary tissue of rat offspring: preventive effects of resveratrol. Mol Carcinog. 2015;54(4):261–9.

    Article  CAS  PubMed  Google Scholar 

  49. Schlesinger Y, et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet. 2007;39(2):232–6.

    Article  CAS  PubMed  Google Scholar 

  50. Vanden Berghe W. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol Res. 2012;65(6):565–76.

    Article  CAS  PubMed  Google Scholar 

  51. Xi Y, et al. Validation of biomarkers associated with 5-fluorouracil and thymidylate synthase in colorectal cancer. Oncol Rep. 2008;19(1):257–62.

    CAS  PubMed  Google Scholar 

  52. Chen QW, et al. Epigenetic regulation and cancer (review). Oncol Rep. 2014;31(2):523–32.

    PubMed  Google Scholar 

  53. Chen Y, et al. Differential methylation of the micro-RNA 7b gene targets postnatal maturation of murine neuronal Mecp2 gene expression. Dev Neurobiol. 2014;74(4):407–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Esteller M, et al. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 1999;59(1):67–70.

    CAS  PubMed  Google Scholar 

  55. Grady WM, et al. Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res. 2001;61(3):900–2.

    CAS  PubMed  Google Scholar 

  56. Lee TL, et al. Detection of gene promoter hypermethylation in the tumor and serum of patients with gastric carcinoma. Clin Cancer Res. 2002;8(6):1761–6.

    CAS  PubMed  Google Scholar 

  57. Sanchez-Cespedes M, et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res. 2000;60(4):892–5.

    CAS  PubMed  Google Scholar 

  58. Singh V, Sharma P, Capalash N. DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer. Curr Cancer Drug Targets. 2013;13(4):379–99.

    Article  CAS  PubMed  Google Scholar 

  59. Widschwendter M, et al. Epigenetic stem cell signature in cancer. Nat Genet. 2007;39(2):157–8.

    Article  CAS  PubMed  Google Scholar 

  60. Agresti A, Bianchi ME. HMGB proteins and gene expression. Curr Opin Genet Dev. 2003;13(2):170–8.

    Article  CAS  PubMed  Google Scholar 

  61. Mirza S, et al. Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer. 2013;16(1):23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pallier C, et al. Association of chromatin proteins high mobility group box (HMGB) 1 and HMGB2 with mitotic chromosomes. Mol Biol Cell. 2003;14(8):3414–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128(4):707–19.

    Article  CAS  PubMed  Google Scholar 

  64. Li Y, et al. The histone modifications governing TFF1 transcription mediated by estrogen receptor. J Biol Chem. 2011;286(16):13925–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Casanova M, et al. Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells. Development. 2011;138(8):1471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hassan YI, Zempleni J. Epigenetic regulation of chromatin structure and gene function by biotin. J Nutr. 2006;136(7):1763–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Magerl C, et al. H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Hum Pathol. 2010;41(2):181–9.

    Article  CAS  PubMed  Google Scholar 

  68. Pan W, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol. 2010;184(12):6773–81.

    Article  CAS  PubMed  Google Scholar 

  69. Baynam G, et al. Intersections of epigenetics, twinning and developmental asymmetries: insights into monogenic and complex diseases and a role for 3D facial analysis. Twin Res Hum Genet. 2011;14(4):305–15.

    Article  PubMed  Google Scholar 

  70. Godfrey KM, et al. Non-imprinted epigenetics in fetal and postnatal development and growth. Nestle Nutr Inst Workshop Ser. 2013;71:57–63.

    Article  PubMed  Google Scholar 

  71. Fabbri M, et al. Whole genome analysis and microRNAs regulation in HepG2 cells exposed to cadmium. ALTEX. 2012;29(2):173–82.

    Article  PubMed  Google Scholar 

  72. Friedman JM, et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 2009;69(6):2623–9.

    Article  CAS  PubMed  Google Scholar 

  73. Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis. 2012;33(6):1126–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Adamsen BL, et al. Apoptosis, cell cycle progression and gene expression in TP53-depleted HCT116 colon cancer cells in response to short-term 5-fluorouracil treatment. Int J Oncol. 2007;31(6):1491–500.

    CAS  PubMed  Google Scholar 

  75. Mobarra N, et al. Overexpression of microRNA-16 declines cellular growth, proliferation and induces apoptosis in human breast cancer cells. In Vitro Cell Dev Biol Anim. 2015;51(6):604–11.

    Article  CAS  PubMed  Google Scholar 

  76. Wang Z, et al. MicroRNA-378-5p suppresses cell proliferation and induces apoptosis in colorectal cancer cells by targeting BRAF. Cancer Cell Int. 2015;15:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yang T, et al. MicroRNA-15a induces cell apoptosis and inhibits metastasis by targeting BCL2L2 in non-small cell lung cancer. Tumour Biol. 2015;36(6):4357–65.

    Article  CAS  PubMed  Google Scholar 

  78. Zhao X, et al. RNA silencing of integrin-linked kinase increases the sensitivity of the A549 lung cancer cell line to cisplatin and promotes its apoptosis. Mol Med Rep. 2015;12(1):960–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lai EC, et al. Computational identification of Drosophila microRNA genes. Genome Biol. 2003;4(7):R42.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wang Y, et al. Genetic and epigenetic studies for determining molecular targets of natural product anticancer agents. Curr Cancer Drug Targets. 2013;13(5):506–18.

    Article  CAS  PubMed  Google Scholar 

  81. Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 2004;32(Database issue):D109–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kupczyk M, Kuna P. MicroRNAs—new biomarkers of respiratory tract diseases. Pneumonol Alergol Pol. 2014;82(2):183–90.

    Article  CAS  PubMed  Google Scholar 

  83. Li X, et al. MicroRNA expression profiles in differentiated thyroid cancer, a review. Int J Clin Exp Med. 2013;6(1):74–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sanchez-Espiridion B, et al. MicroRNA signatures and treatment response in patients with advanced classical Hodgkin lymphoma. Br J Haematol. 2013;162(3):336–47.

    Article  CAS  PubMed  Google Scholar 

  85. Yang H, et al. Up-regulation of microRNA-138 induce radiosensitization in lung cancer cells. Tumour Biol. 2014;35(7):6557–65.

    Article  CAS  PubMed  Google Scholar 

  86. Kaminski J, et al. Resveratrol initiates differentiation of mouse skeletal muscle-derived C2C12 myoblasts. Biochem Pharmacol. 2012;84(10):1251–9.

    Article  CAS  PubMed  Google Scholar 

  87. Lancon A, et al. Control of MicroRNA expression as a new way for resveratrol to deliver its beneficial effects. J Agric Food Chem. 2012;60(36):8783–9.

    Article  CAS  PubMed  Google Scholar 

  88. Liu P, et al. Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin Transl Oncol. 2013;15(9):741–6.

    Article  CAS  PubMed  Google Scholar 

  89. Sheth S, et al. Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One. 2012;7(12), e51655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bachmann IM, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006;24(2):268–73.

    Article  CAS  PubMed  Google Scholar 

  91. Baptista T, et al. Regulation of histone H2A.Z expression is mediated by sirtuin 1 in prostate cancer. Oncotarget. 2013;4(10):1673–85.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chen WD, et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst. 2005;97(15):1124–32.

    Article  CAS  PubMed  Google Scholar 

  93. Cooney CA. Are somatic cells inherently deficient in methylation metabolism? A proposed mechanism for DNA methylation loss, senescence and aging. Growth Dev Aging. 1993;57(4):261–73.

    CAS  PubMed  Google Scholar 

  94. Feng ZJ, et al. Lung cancer cell migration is regulated via repressing growth factor PTN/RPTP beta/zeta signaling by menin. Oncogene. 2010;29(39):5416–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ellinger J, et al. Global levels of histone modifications predict prostate cancer recurrence. Prostate. 2010;70(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  96. Elsheikh SE, et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 2009;69(9):3802–9.

    Article  CAS  PubMed  Google Scholar 

  97. Li Q, et al. Polycomb CBX7 directly controls trimethylation of histone H3 at lysine 9 at the p16 locus. PLoS One. 2010;5(10), e13732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Canaani E, et al. ALL-1/MLL1, a homologue of Drosophila TRITHORAX, modifies chromatin and is directly involved in infant acute leukaemia. Br J Cancer. 2004;90(4):756–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu H, et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature. 2010;467(7313):343–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Scacheri PC, et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet. 2006;2(4), e51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kobayashi Y, et al. DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res. 2011;21(7):1017–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Velichutina I, et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood. 2010;116(24):5247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tell R, et al. Gastrin-releasing peptide signaling alters colon cancer invasiveness via heterochromatin protein 1Hsbeta. Am J Pathol. 2011;178(2):672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang XQ, et al. SMYD3 tandem repeats polymorphism is not associated with the occurrence and metastasis of hepatocellular carcinoma in a Chinese population. Exp Oncol. 2007;29(1):71–3.

    PubMed  Google Scholar 

  105. Fang W, et al. Preferential loss of a polymorphic RIZ allele in human hepatocellular carcinoma. Br J Cancer. 2001;84(6):743–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lucio-Eterovic AK, et al. Role for the nuclear receptor-binding SET domain protein 1 (NSD1) methyltransferase in coordinating lysine 36 methylation at histone 3 with RNA polymerase II function. Proc Natl Acad Sci U S A. 2010;107(39):16952–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nimura K, et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature. 2009;460(7252):287–91.

    Article  CAS  PubMed  Google Scholar 

  108. Taketani T, et al. NUP98-NSD3 fusion gene in radiation-associated myelodysplastic syndrome with t(8;11)(p11;p15) and expression pattern of NSD family genes. Cancer Genet Cytogenet. 2009;190(2):108–12.

    Article  CAS  PubMed  Google Scholar 

  109. Watanabe H, et al. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell Int. 2008;8:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Suikki HE, et al. Genetic alterations and changes in expression of histone demethylases in prostate cancer. Prostate. 2010;70(8):889–98.

    CAS  PubMed  Google Scholar 

  111. Fukuda T, et al. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol Cell Neurosci. 2011;46(3):614–24.

    Article  CAS  PubMed  Google Scholar 

  112. Vinatzer U, et al. Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin Cancer Res. 2008;14(20):6426–31.

    Article  CAS  PubMed  Google Scholar 

  113. Yang ZQ, et al. Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. Cancer Res. 2000;60(17):4735–9.

    CAS  PubMed  Google Scholar 

  114. Zeng J, et al. The histone demethylase RBP2 Is overexpressed in gastric cancer and its inhibition triggers senescence of cancer cells. Gastroenterology. 2010;138(3):981–92.

    Article  CAS  PubMed  Google Scholar 

  115. Rao M, et al. Inhibition of histone lysine methylation enhances cancer-testis antigen expression in lung cancer cells: implications for adoptive immunotherapy of cancer. Cancer Res. 2011;71(12):4192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xiang Y, et al. JMJD3 is a histone H3K27 demethylase. Cell Res. 2007;17(10):850–7.

    Article  CAS  PubMed  Google Scholar 

  117. Bishayee A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila). 2009;2(5):409–18.

    Article  CAS  Google Scholar 

  118. Bishayee A, Dhir N. Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: inhibition of cell proliferation and induction of apoptosis. Chem Biol Interact. 2009;179(2-3):131–44.

    Article  CAS  PubMed  Google Scholar 

  119. Bishayee A, Politis T, Darvesh AS. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat Rev. 2010;36(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  120. Singh NP, et al. Resveratrol (trans-3,5,4′-trihydroxystilbene) suppresses EL4 tumor growth by induction of apoptosis involving reciprocal regulation of SIRT1 and NF-kappaB. Mol Nutr Food Res. 2011;55(8):1207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Singh UP, et al. Resveratrol (trans-3,5,4′-trihydroxystilbene) induces silent mating type information regulation-1 and down-regulates nuclear transcription factor-kappaB activation to abrogate dextran sulfate sodium-induced colitis. J Pharmacol Exp Ther. 2010;332(3):829–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Singh UP, et al. Role of resveratrol-induced CD11b(+) Gr-1(+) myeloid derived suppressor cells (MDSCs) in the reduction of CXCR3(+) T cells and amelioration of chronic colitis in IL-10(−/−) mice. Brain Behav Immun. 2012;26(1):72–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bai Y, et al. Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo. Cancer Sci. 2010;101(2):488–93.

    Article  CAS  PubMed  Google Scholar 

  124. Kraft TE, et al. Fighting cancer with red wine? Molecular mechanisms of resveratrol. Crit Rev Food Sci Nutr. 2009;49(9):782–99.

    Article  CAS  PubMed  Google Scholar 

  125. Liu PL, et al. Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases. Mol Nutr Food Res. 2010;54 Suppl 2:S196–204.

    Article  CAS  PubMed  Google Scholar 

  126. Mao QQ, et al. Resveratrol confers resistance against taxol via induction of cell cycle arrest in human cancer cell lines. Mol Nutr Food Res. 2010;54(11):1574–84.

    Article  CAS  PubMed  Google Scholar 

  127. Vanamala J, et al. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer. 2010;10:238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Athar M, et al. Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch Biochem Biophys. 2009;486(2):95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Papoutsis AJ, et al. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J Nutr. 2010;140(9):1607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stefanska B, et al. Hypomethylation and induction of retinoic acid receptor beta 2 by concurrent action of adenosine analogues and natural compounds in breast cancer cells. Eur J Pharmacol. 2010;638(1-3):47–53.

    Article  CAS  PubMed  Google Scholar 

  131. Kaeberlein M, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005;280(17):17038–45.

    Article  CAS  PubMed  Google Scholar 

  132. Bouras T, et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem. 2005;280(11):10264–76.

    Article  CAS  PubMed  Google Scholar 

  133. Das C, et al. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature. 2009;459(7243):113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li Y, et al. SIRT2 down-regulation in HeLa can induce p53 accumulation via p38 MAPK activation-dependent p300 decrease, eventually leading to apoptosis. Genes Cells. 2011;16(1):34–45.

    Article  CAS  PubMed  Google Scholar 

  135. Lim JH, et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010;38(6):864–78.

    Article  CAS  PubMed  Google Scholar 

  136. Lin YL, et al. Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol. 2008;77(5):965–73.

    Article  CAS  PubMed  Google Scholar 

  137. Boily G, et al. SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene. 2009;28(32):2882–93.

    Article  CAS  PubMed  Google Scholar 

  138. Farghali H, Kutinova Canova N, Lekic N. Resveratrol and related compounds as antioxidants with an allosteric mechanism of action in epigenetic drug targets. Physiol Res. 2013;62(1):1–13.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.K.M. has been supported by National Institutes of Health grant P20CA192976, US Department of Defense grant W911NF-12-1-0073 and W911NF-14-1-0064, and National Science Foundation grant 1154214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stokes, J.A., Kumar, S., Scissum-Gunn, K., Singh, U.P., Mishra, M.K. (2016). Epigenetic and Cancer: An Evaluation of the Impact of Dietary Components. In: Mishra, M., Bishnupuri, K. (eds) Epigenetic Advancements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-24951-3_3

Download citation

Publish with us

Policies and ethics