Skip to main content

Biotechnological Applications of Styrene-Degrading Microorganisms or Involved Enzymes

  • Chapter
  • First Online:
Microbial Styrene Degradation

Part of the book series: SpringerBriefs in Microbiology ((BRIEFSMICROBIOL))

  • 608 Accesses

Abstract

The development of sustainable technologies which are more ecofriendly as common alternatives is a major goal of biotechnology. In this context, microorganisms and their repertoire of biocatalysts serve as a resource in many respects. Styrene-degrading microorganisms and their enzymes also can serve as such a rich resource for biotechnology. The microorganisms, for example, tolerate organic solvents, degrade recalcitrant and toxic compounds, enrich valuable intermediates, and can be genetically manipulated. Thus these can be employed to treat waste streams in order to detoxify polluted air and aquifer. Their regulatory network can also be applied as a form of a biosensor to report on the presence of such toxic compounds. Or the biomass can be used as whole-cell biocatalyst in order to produce valuable compounds such as styrene derivatives for polymer synthesis, indigoid dyes, aroma compounds, or even pharmaceuticals as ibuprofen. The reservoir of biocatalysts can also be used as a source for genetic material. Thus genes can be manipulated and cloned to (recombinantly) produce heterologous enzymes for the biocatalysis in alternative hosts as Escherichia coli. Often these enzymes are later employed to produce (enantiopure) compounds which serve as valuable building blocks for various fields as exemplary aroma production, agrochemistry, food and feed, pharmaceutical production, or polymer chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso S, Navarro-Llorens JM, Tormo A, Perera J (2003) Construction of a bacterial biosensor for styrene. J Biotechnol 102:301–306

    Article  CAS  PubMed  Google Scholar 

  • Archelas A, Furstoss R (1997) Synthesis of enantiopure epoxides through biocatalytic approaches. Annu Rev Microbiol 51:491–525

    Article  CAS  PubMed  Google Scholar 

  • Archer IVJ (1997) Epoxide hydrolases as asymmetric catalysts. Tetrahedron 53:15617–15662

    Article  CAS  Google Scholar 

  • Arnold M, Reittu A, Von Wright A, Martikainen PJ, Suihko ML (1997) Bacterial degradation of styrene in waste gases using a peat filter. Appl Microbiol Biotechnol 48:738–744

    Article  CAS  PubMed  Google Scholar 

  • Bellucci G, Chiappe C, Cordoni A, Marioni F (1993) Substrate enantioselectivity in the rabbit liver microsomal epoxide hydrolase catalyzed hydrolysis of trans and cis 1-phenylpropene oxides. A comparison with styrene oxide. Tetrahedron Asymmetry 4:1153–1160

    Article  CAS  Google Scholar 

  • Beltrametti F, Marconi AM, Bestetti G, Galli E, Ruzzi M, Zennaro E (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 63:2232–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernasconi S, Orsini F, Sello G, Colmegna A, Galli E, Bestetti G (2000) Bioconversion of substituted styrenes to the corresponding enantiomerically pure epoxides by a recombinant Escherichia coli strain. Tetrahedron Lett 41:9157–9161

    Article  CAS  Google Scholar 

  • Bernasconi S, Orsini F, Sello G, Di Gennaro P (2004) Bacterial monooxygenase mediated preparation of chiral oxiranes: study of the effects of substituent nature and position. Tetrahedron Asymmetry 15:1603–1606

    Article  CAS  Google Scholar 

  • Bestetti G, Di Gennaro P, Colmegna A, Ronco I, Galli E, Sello G (2004) Characterization of styrene catabolic pathway in Pseudomonas fluorescens ST. Int Biodet Biodeg 54:183–187

    Article  CAS  Google Scholar 

  • Boyd DR, Sharma ND, McMurray B, Haughey SA, Allen CCR, Hamilton JTG, McRoberts WC, O’Ferrall RAM, Nikodinovic-Runic J, Coulombel LA, O’Connor KE (2012) Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes. Org Biomol Chem 10:782–790

    Article  CAS  PubMed  Google Scholar 

  • Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Stuermer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824

    Article  CAS  Google Scholar 

  • Burda E, Reß T, Winkler T, Giese C, Kostrov X, Huber T, Hummel W, Gröger H (2013) Highly enantioselective reduction of α-methylated nitroalkenes. Angew Chem Int Ed 52:9323–9326

    Article  CAS  Google Scholar 

  • Busto E, Simon RC, Kroutil W (2015) Vinylation of unprotected phenols using a biocatalytic system. Angew Chem Int Ed. doi:10.1002/anie.201505696

  • Chen X-M, Kobayashi H, Sakai M, Hirata H, Asai T, Ohnishi T, Baldermann S, Watanabe N (2011) Functional characterization of rose phenylacetaldehyde reductase (PAR), an enzyme involved in the biosynthesis of the scent compound 2-phenylethanol. J Plant Physiol 168:88–95

    Article  CAS  PubMed  Google Scholar 

  • Choi WJ, Huh EC, Park HJ, Lee EY, Choi CY (1998) Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol Tech 12:225–228

    Article  CAS  Google Scholar 

  • Coelho PS, Brustad EM, Kannan A, Arnold FH (2013a) Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339:307–310

    Article  CAS  PubMed  Google Scholar 

  • Coelho PS, Wang ZJ, Ener ME, Baril SA, Kannan A, Arnold FH, Brustad EM (2013b) A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat Chem Biol 9:485–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colonna S, Gaggero N, Casella L, Carrea G, Pasta P (1993) Enantioselective epoxidation of styrene derivatives by chloroperoxidase catalysis. Tetrahedron Asymmetry 4:1325–1330

    Article  CAS  Google Scholar 

  • Corsi RL, Seed L (1995) Biofiltration of BTEX: media, substrate, and loadings effects. Environ Prog 14:151–158

    Article  CAS  Google Scholar 

  • Cox HHJ, Faber BW, van Heiningen WNM, Radhoe H, Doddema HJ, Harder W (1996) Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase. Appl Environ Microbiol 62:1471–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delhomenie M-C, Heitz M (2005) Biofiltration of air: a review. Crit Rev Biotechnol 25:53–72

    Article  CAS  PubMed  Google Scholar 

  • Deshusses MA (1997) Biological waste air treatment in biofilters. Curr Opin Biotechnol 8:335–339

    Article  CAS  PubMed  Google Scholar 

  • Di Gennaro P, Colmegna A, Galli E, Sello G, Pelizzoni F, Bestetti G (1999) A new biocatalyst for production of optically pure aryl epoxides by styrene monooxygenase from Pseudomonas fluorescens ST. Appl Environ Microbiol 65:2794–2797

    PubMed  PubMed Central  Google Scholar 

  • Di Gennaro P, Kazandjian LV, Mezzetti F, Sello G (2013) Regulated expression systems for the development of whole-cell biocatalysts expressing oxidative enzymes in a sequential manner. Arch Microbiol 195:269–278

    Article  PubMed  CAS  Google Scholar 

  • Fruetel JA, Collins JR, Camper DL, Loew GH, Demontellano PRO (1992) Calculated and experimental absolute stereochemistry of the styrene and beta-methylstyrene epoxides formed by cytochrome-P450(Cam). J Am Chem Soc 114:6987–6993

    Article  CAS  Google Scholar 

  • Fruetel JA, Mackman RL, Peterson JA, Demontellano PRO (1994) Relationship of active-site topology to substrate-specificity for cytochrome P450(Terp) (Cyp108). J Biol Chem 269:28815–28821

    CAS  PubMed  Google Scholar 

  • Gopalakrishna Y, Narayanan TK, Ramanada Rao G (1976) Biosynthesis of β-phenethyl alcohol in Candida guilliermondii. Biochem Biophys Res Comm 69:417–422

    Article  CAS  PubMed  Google Scholar 

  • Guan C, Ju J, Borlee BR, Williamson LL, Shen B, Raffa KF, Handelsman J (2007) Signal mimics derived from a metagenomic analysis of the gypsy moth gut microbiota. Appl Environ Microbiol 73:3669–3676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gursky L, Nikodinovic-Runic J, Feenstra K, O’Connor K (2010) In vitro evolution of styrene monooxygenase from Pseudomonas putida CA-3 for improved epoxide synthesis. Appl Microbiol Biotechnol 85:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Hartmans S, Smits JP, van der Werf MJ, Volkering F, de Bont JAM (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol 55:2850–2855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hölderich WH, Barsnick U (2001) Rearrangement of epoxides. In: Sheldon SA, van Bekkum H (eds) Fine chemicals through heterogeneous catalysis. Wiley-VCH, Weinheim, pp 217–231

    Google Scholar 

  • Hollmann F, Lin P-C, Witholt B, Schmid A (2003) Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis. J Am Chem Soc 125:8209–8217

    Article  CAS  PubMed  Google Scholar 

  • Huijbers MME, Montersino S, Westphal AH, Tischler D, van Berkel WJH (2014) Flavin dependent monooxygenases. Arch Biochem Biophys 544:2–17

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Morihama R, Wang J, Okada K, Mizuguchi N (1997) Purification and characterization of phenylacetaldehyde reductase from a styrene-assimilating Corynebacterium strain, ST-10. Appl Environ Microbiol 63:3783–3788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh N, Mizuguchi N, Mabuchi M (1999) Production of chiral alcohols by enantioselective reduction with NADH-dependent phenylacetaldehyde reductase from Corynebacterium strain, ST-10. J Mol Catal B Enzym 6:41–50

    Article  CAS  Google Scholar 

  • Itoh N, Matsuda M, Mabuchi M, Dairi T, Wang J (2002) Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. Eur J Biochem 269:2394–2402

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Nakamura M, Inoue K, Makino Y (2007) Continuous production of chiral 1,3-butanediol using immobilized biocatalysts in a packed bed reactor: promising biocatalysis method with an asymmetric hydrogen-transfer bioreduction. Appl Microbiol Biotechnol 75:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Julsing MK, Kuhn D, Schmid A, Bühler B (2012) Resting cells of recombinant E. coli show high epoxidation yields on energy source and high sensitivity to product inhibition. Biotechnol Bioeng 109:1109–1119

    Article  CAS  PubMed  Google Scholar 

  • Juneson C, Ward OP, Singh A (2001) Microbial treatment of a styrene-contaminated air stream in a biofilter with high elimination capacities. J Ind Microbiol Biotechnol 26:196–202

    Article  CAS  PubMed  Google Scholar 

  • Kang S-Y, Choi O, Lee JK, Ahn J-O, Ahn JS, Hwang BY, Hong Y-S (2015) Artificial de novo biosynthesis of hydroxystyrene derivatives in a tyrosine overproducing Escherichia coli strain. Microb Cell Fact 14:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Keane A, Phoenix P, Ghoshal S, Lau PCK (2002) Exposing culprit organic pollutants: a review. J Microbiol Methods 49:103–119

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Lee OK, Lee SJ, Hwang S, Kim SJ, Yang S-H, Park S, Lee EY (2006) Enantioselective epoxide hydrolase activity of a newly isolated microorganism, Sphingomonas echinoides EH-983, from seawater. J Mol Catal B Enzym 41:130–135

    Article  CAS  Google Scholar 

  • Kluge M, Ullrich R, Scheibner K, Hofrichter M (2012) Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita. Green Chem 14:440–446

    Article  CAS  Google Scholar 

  • Königsberger K, Hudlicky T (1993) Microbial oxidation of 2-bromostyrene by Pseudomonas putida 39/D. Isolation and identification of metabolites. Tetrahedron Asymmetry 4:2469–2474

    Article  Google Scholar 

  • Kotik M, Archelas A, Wohlgemuth R (2012) Epoxide hydrolases and their application in organic synthesis. Curr Org Chem 16:451–482

    Article  CAS  Google Scholar 

  • Kuhn D, Bühler B, Schmid A (2012a) Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas. J Ind Microbiol Biotechnol 39:1125–1133

    Article  CAS  PubMed  Google Scholar 

  • Kuhn D, Julsing MK, Heinzle E, Bühler B (2012b) Systematic optimization of a biocatalytic two-liquid phase oxyfunctionalization process guided by ecological and economic assessment. Green Chem 14:645–653

    Article  CAS  Google Scholar 

  • Kuhn D, Fritzsch FSO, Zhang X, Wendisch VF, Blank LM, Bühler B, Schmid A (2013) Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands. J Biotechnol 163:194–203

    Article  CAS  PubMed  Google Scholar 

  • Lechner H, Pressnitz D, Kroutil W (2015) Biocatalysts for the formation of three- to six-membered carbo- and heterocycles. Biotechnol Adv 33:457–480

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Lee EJ, Yoo SS, Park SH, Kim HS, Lee EY, Lee EY (2003) Enantioselective hydrolysis of racemic styrene oxide by epoxide hydrolase of Rhodosporidium kratochvilovae SYU-08. Biotechnol Bioprocess Eng 8:306–308

    Article  CAS  Google Scholar 

  • Lee EY, Yoo S-S, Kim HS, Lee SJ, Oh Y-K, Park S (2004) Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis. Enz Microbiol Technol 35:624–631

    Article  CAS  Google Scholar 

  • Li QS, Ogawa J, Schmid RD, Shimizu S (2001) Residue size at position 87 of cytochrome P450BM-3 determines its stereoselectivity in propylbenzene and 3-chlorostyrene oxidation. FEBS Lett 508:249–252

    Article  CAS  PubMed  Google Scholar 

  • Li AT, Liu J, Pham SQ, Li Z (2013) Engineered P450pyr monooxygenase for asymmetric epoxidation of alkenes with unique and high enantioselectivity. Chem Commun 49:11572–11574

    Article  CAS  Google Scholar 

  • Lin H, Qiao J, Liu Y, Wu Z-L (2010) Styrene monooxygenase from Pseudomonas sp. LQ26 catalyzes the asymmetric epoxidation of both conjugated and unconjugated alkenes. J Mol Catal B Enzym 67:236–241

    Article  CAS  Google Scholar 

  • Lin H, Liu Y, Wu ZL (2011) Highly diastereo- and enantio-selective epoxidation of secondary allylic alcohols catalyzed by styrene monooxygenase. Chem Commun (Camb) 47:2610–2612

    Article  CAS  Google Scholar 

  • Lin H, Tang D-F, Qaed Ahmed AA, Liu Y, Wu Z-L (2012) Mutations at the putative active cavity of styrene monooxygenase: enhanced activity and reversed enantioselectivity. J Biotechnol 161:235–241

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Michel J, Wang Z, Witholt B, Li Z (2006) Enantioselective hydrolysis of styrene oxide with the epoxide hydrolase of Sphingomonas sp. HXN-200. Tetrahedron Asymmetry 17:47–52

    Article  CAS  Google Scholar 

  • Makino Y, Itho N (2014) Development of an improved phenylacetaldehyde reductase mutant by an efficient selection procedure. Appl Microbiol Biotechnol 98:4437–4443

    Article  CAS  PubMed  Google Scholar 

  • Makino Y, Inoue K, Dairi T, Itoh N (2005) Engineering of phenylacetaldehyde reductase for efficient substrate conversion in concentrated 2-propanol. Appl Environ Microbiol 71:4713–4720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makino Y, Dairi T, Itoh N (2007) Engineering the phenylacetaldehyde reductase mutant for improved substrate conversion in the presence of concentrated 2-propanol. Appl Microbiol Biotechnol 77:833–843

    Article  CAS  PubMed  Google Scholar 

  • Malhautier L, Khammar N, Bayle S, Fanlo J-L (2005) Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 68:16–22

    Article  CAS  PubMed  Google Scholar 

  • Manoj KM, Archelas A, Baratti J, Furstoss R (2001) Microbiological transformations. Part 45. A green chemistry preparative scale synthesis of enantiopure building blocks of eliprodil: elaboration of a high substrate concentration epoxide hydrolase-catalyzed hydrolytic kinetic resolution process. Tetrahedron 57:695–701

    Article  CAS  Google Scholar 

  • Marconi AM, Beltrametti F, Bestetti G, Solinas F, Ruzzi M, Galli E, Zennaro E (1996) Cloning and characterization of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 62:121–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mars AE, Kasberg T, Kaschabek SR, van Agteren MH, Janssen DB, Reineke W (1997) Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13:544–554

    Article  CAS  PubMed  Google Scholar 

  • McKenna R, Pugh S, Thompson B, Nielsen DR (2013) Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1,2-phenylethanediol from renewable resources. Biotechnol J 8:1465–1475

    Article  CAS  PubMed  Google Scholar 

  • McKenna R, Thompson B, Pugh S, Nielsen DR (2014) Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Fact 13:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyamoto K, Okuro K, Ohta H (2007) Substrate specificity and reaction mechanism of recombinant styrene oxide isomerase from Pseudomonas putida S12. Tetrahedron Lett 48:3255–3257

    Article  CAS  Google Scholar 

  • Montersino S, Tischler D, Gassner GT, van Berkel WJH (2011) Catalytic and structural features of flavoprotein hydroxylases and epoxidases. Adv Synth Catal 353:2301–2319

    Article  CAS  Google Scholar 

  • Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene. Biodegradation 19:851–858

    Article  CAS  PubMed  Google Scholar 

  • Narancic T, Radivojevic J, Jovanovic P, Francuski D, Bigovic M, Maslak V, Savic V, Vasiljevic B, O’Connor KE, Nikodinovic-Runic J (2013) Highly efficient Michael-type addition of acetaldehyde to β-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase. Biores Technol 142:462–468

    Article  CAS  Google Scholar 

  • Nikodinovic-Runic J, Flanagan M, Hume AR, Cagney G, O’Connor KE (2009) Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions. Microbiology 155:3348–3361

    Article  CAS  PubMed  Google Scholar 

  • Nikodinovic-Runic J, Coulombel LA, Francuski D, Sharma ND, Boyd DR, O’Ferrall RAM, O’Connor KE (2013) The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3. Appl Microbiol Biotechnol 97:4849–4858

    Article  CAS  PubMed  Google Scholar 

  • O’Connor K, Duetz W, Wind B, Dobson ADW (1996) The effect of nutrient limitation on styrene metabolism in Pseudomonas putida CA-3. Appl Environ Microbiol 62:3594–3599

    PubMed  PubMed Central  Google Scholar 

  • O’Connor KE, Dobson AD, Hartmans S (1997) Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl Environ Microbiol 63:4287–4291

    PubMed  PubMed Central  Google Scholar 

  • Oelschlägel M, Gröning JAD, Tischler D, Kaschabek SR, Schlömann M (2012a) Styrene oxide isomerase of Rhodococcus opacus 1CP, a highly stable and considerably active enzyme. Appl Environ Microbiol 78:4330–4337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oelschlägel M, Tischler D, Gröning JAD, Kaschabek SR, Schlömann M (2012b) Process for the enzymatic synthesis of aromatic aldehydes or ketones. Patent: DE 102011006459 A1 20121004

    Google Scholar 

  • Oelschlägel M, Riedel A, ZniszczoÅ‚ A, SzymaÅ„ska K, JarzÄ™bski AB, Schlömann M, Tischler D (2014a) Immobilization of an integral membrane protein for biotechnological phenylacetaldehyde production. J Biotechnol 174:7–13

    Article  PubMed  CAS  Google Scholar 

  • Oelschlägel M, Zimmerling J, Schlömann M, Tischler D (2014b) Styrene oxide isomerase of Sphingopyxis sp. Kp5.2. Microbiol (UK) 160:2481–2491

    Article  CAS  Google Scholar 

  • Oelschlägel M, Heiland C, Schlömann M, Tischler D (2015a) Production of a recombinant membrane protein in an Escherichia coli strain for the whole cell biosynthesis of phenylacetic acids. Biotechnol Rep 7:38–43

    Article  Google Scholar 

  • Oelschlägel M, Kaschabek SR, Zimmerling J, Schlömann M, Tischler D (2015b) Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria. Biotechnol Rep 6:20–26

    Article  Google Scholar 

  • Orru RV, Faber K (1999) Stereoselectivities of microbial epoxide hydrolases. Curr Opin Chem Biol 3:16–21

    Article  CAS  PubMed  Google Scholar 

  • Otto K, Hofstetter K, Roethlisberger M, Witholt B, Schmid A (2004) Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J Bacteriol 186:5292–5302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999) An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 65:2324–2332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panke S, Held M, Wubbolts MG, Witholt B, Schmid A (2002) Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol Bioeng 80:33–41

    Article  CAS  PubMed  Google Scholar 

  • Paul CE, Tischler D, Riedel A, Heine T, Itoh N, Hollmann F (2015) Nonenzymatic regeneration of styrene monooxygenase for catalysis. ACS Catal 5:2961–2965

    Article  CAS  Google Scholar 

  • Pedragosa-Moreau S, Archelas A, Furstoss R (1993) Microbial transformations. 28. Enantiocomplementary epoxide hydrolases as a preparative access to both enantiomers of styrene oxide. J Org Chem 58:5533–5536

    Article  CAS  Google Scholar 

  • Pedragosa-Moreau S, Archelas A, Furstoss R (1994) Microbiological transformations. 29. Enantioselective hydrolysis of epoxides using microorganisms: a mechanistic study. Bioorg Med Chem 2:609–616

    Article  CAS  PubMed  Google Scholar 

  • Pedragosa-Moreau S, Archelas A, Furstoss R (1996a) Microbial transformations 32. Use of epoxide hydrolase mediated biohydrolysis as a way to enantiopure epoxides and vicinal diols: application to substituted styrene oxide derivatives. Tetrahedron 52:4593–4606

    Article  CAS  Google Scholar 

  • Pedragosa-Moreau S, Morisseau C, Zylber J, Archelas A, Baratti J, Furstoss R (1996b) Microbiological transformations. 33. Fungal epoxide hydrolases applied to the synthesis of enantiopure para-substituted styrene oxides. A mechanistic approach. J Org Chem 61:7402–7407

    Article  CAS  PubMed  Google Scholar 

  • Qaed AA, Lin H, Tang D-F, Wu Z-L (2011) Rational design of styrene monooxygenase mutants with altered substrate preference. Biotechnol Lett 33:611–616

    Article  CAS  PubMed  Google Scholar 

  • Qi WW, Vannelli T, Breinig S, Ben-Bassat A, Gatenby AA, Haynie SL, Sariaslani FS (2007) Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene. Metab Eng 9:268–276

    Article  CAS  PubMed  Google Scholar 

  • Renata H, Wang ZJ, Kitto RZ, Arnold FH (2014) P450-catalyzed asymmetric cyclopropanation of electron-deficient olefins under aerobic conditions. Catal Sci Technol 4:3640–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel A, Heine T, Westphal AH, Conrad C, van Berkel WJH, Tischler D (2015) Catalytic and hydrodynamic properties of styrene monooxygenases from Rhodococcus opacus 1CP are modulated by cofactor binding. AMB Express 5:30

    Article  PubMed Central  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Lopez de Alda MJ, Barceló D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041

    Article  CAS  PubMed  Google Scholar 

  • Rui L, Cao L, Chen W, Reardon KF, Wood TK (2004) Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1,2-dichloroethylene in cells expressing an evolved toluene ortho-monooxygenase. J Biol Chem 279:46810–46817

    Article  CAS  PubMed  Google Scholar 

  • Rui L, Cao L, Chen W, Reardon KF, Wood TK (2005) Protein engineering of epoxide hydrolase from Agrobacterium radiobacter AD1 for enhanced activity and enantioselective production of (R)-1-phenylethane-1,2-diol. Appl Environ Microbiol 71:3995–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruinatscha R, Bühler K, Schmid A (2014) Development of a high performance electrochemical cofactor regeneration module and its application to the continuous reduction of FAD. J Mol Catal B Enzym 103:100–105

    Article  CAS  Google Scholar 

  • Santhanam L, Dordick JS (2002) Chloroperoxidase-catalyzed epoxidation of styrene in aqueous and nonaqueous media. Biocatal Biotransform 20:265–274

    Article  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  PubMed  Google Scholar 

  • Spelberg JHL, Rink R, Kellogg RM, Janssen DB (1998) Enantioselectivity of a recombinant epoxide hydrolase from Agrobacterium radiobacter. Tetrahedron Asymmetry 9:459–466

    Article  CAS  Google Scholar 

  • Stiner L, Halverson LJ (2002) Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68:1962–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tieman DM, Loucas HM, Kim JY, Clark DG, Klee HJ (2007) Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry 68:2660–2669

    Article  CAS  PubMed  Google Scholar 

  • Tischler D, Kaschabek SR (2012) Microbial degradation of xenobiotics. In: Singh SN (ed) Springer, Berlin, pp 67–99

    Google Scholar 

  • Tischler D, Eulberg D, Lakner S, Kaschabek SR, van Berkel WJH, Schlömann M (2009) Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP. J Bacteriol 191:4996–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tischler D, Kermer R, Gröning JAD, Kaschabek SR, van Berkel WJH, Schlömann M (2010) StyA1 and StyA2B from Rhodococcus opacus 1CP: a multifunctional styrene monooxygenase system. J Bacteriol 192:5220–5227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toda H, Imae R, Itoh N (2012a) Efficient biocatalysis for the production of enantiopure (S)-epoxides using a styrene monooxygenase (SMO) and Leifsonia alcohol dehydrogenase (LSADH) system. Tetrahedron Asymmetry 23:1542–1549

    Article  CAS  Google Scholar 

  • Toda H, Imae R, Komio T, Itoh N (2012b) Expression and characterization of styrene monooxygenases of Rhodococcus sp. ST-5 and ST-10 for synthesizing enantiopure (S)-epoxides. Appl Microbiol Biotechnol 96:407–418

    Article  CAS  PubMed  Google Scholar 

  • Toda H, Imae R, Itoh N (2014) Bioproduction of chiral epoxyalkanes using styrene monooxygenase from Rhodococcus sp. ST-10 (RhSMO). Adv Synth Catal 356:3443–3450

    Article  CAS  Google Scholar 

  • Toda H, Ohuchi T, Imae R, Itoh N (2015) Microbial production of aliphatic (S)-epoxyalkanes by using Rhodococcus sp. strain ST-10 styrene monooxygenase expressed in organic-solvent-tolerant Kocuria rhizophila DC2201. Appl Environ Microbiol 81:1919–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utkin I, Yakimov M, Matveeva L, Kozlyak E, Rogozhin I, Solomon Z, Bez-borodov A (1991) Degradation of styrene and ethylbenzene by Pseudomonas species Y2. FEMS Microbiol Lett 77:237–242

    Article  CAS  Google Scholar 

  • van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689

    Article  PubMed  CAS  Google Scholar 

  • van Hellemond EW, Janssen DB, Fraaije MW (2007) Discovery of a novel styrene monooxygenase originating from the metagenome. Appl Environ Microbiol 73:5832–5839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Loo B, Lutje Spelberg JH, Kingma J, Sonke T, Wubbolts MG, Janssen DB (2004) Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling. Chem Biol 11:981–990

    Article  PubMed  CAS  Google Scholar 

  • Verhoef S, Wierckx N, Westerhof RGM, de Winde JH, Ruijssenaars HJ (2009) Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 75:931–936

    Article  CAS  PubMed  Google Scholar 

  • Wang ZJ, Renata H, Peck NE, Farwell CC, Coelho PS, Arnold FH (2014) Improved cyclopropanation activity of histidine-ligated cytochrome P450 enables the enantioselective formal synthesis of levomilnacipran. Angew Chem Int Ed 53:6810–6813

    Article  CAS  Google Scholar 

  • Ward PG, de Roo G, O’Connor KE (2005) Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl Environ Microbiol 71:2046–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward PG, Goff M, Donner M, Kaminsky W, O’Connor KE (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40:2433–2437

    Article  CAS  PubMed  Google Scholar 

  • Warhurst AM, Clarke KF, Hill RA, Holt RA, Fewson CA (1994) Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Appl Environ Microbiol 60:1137–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weijers CAGM (1997) Enantioselective hydrolysis of aryl, alicyclic and aliphatic epoxides by Rhodotorula glutinis. Tetrahedron Asymmetry 8:639–647

    Article  CAS  Google Scholar 

  • Wubbolts MG, Hoven J, Melgert B, Witholt B (1994a) Efficient production of optically-active styrene epoxides in 2-liquid phase cultures. Enzyme Microb Technol 16:887–894

    Article  CAS  Google Scholar 

  • Wubbolts MG, Reuvekamp P, Witholt B (1994b) Tol plasmid-specified xylene oxygenase is a wide substrate range monooxygenase capable of olefin epoxidation. Enzyme Microb Technol 16:608–615

    Article  CAS  PubMed  Google Scholar 

  • Wuensch C, Gross J, Steinkellner G, Gruber K, Glueck SM, Faber K (2013) Asymmetric enzymatic hydration of hydroxystyrene derivatives. Angew Chem Int Ed 52:2293–2297

    Article  CAS  Google Scholar 

  • Wuensch C, Pavkov-Keller T, Steinkellner G, Gross J, Fuchs M, Hromic A, Lyskowski A, Fauland K, Gruber K, Glueck SM, Faber K (2015) Regioselective enzymatic β-carboxylation of para-hydroxystyrene derivatives catalyzed by phenolic acid decarboxylases. Adv Synth Catal 357:1909–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Reetz MT (2010) Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis. J Am Chem Soc 132:15744–15751

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Tischler .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Tischler, D. (2015). Biotechnological Applications of Styrene-Degrading Microorganisms or Involved Enzymes. In: Microbial Styrene Degradation. SpringerBriefs in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-24862-2_5

Download citation

Publish with us

Policies and ethics