Skip to main content

Molecular Organization and Topography of Prolamin Protein Films

  • Chapter
  • First Online:
Imaging Technologies and Data Processing for Food Engineers

Part of the book series: Food Engineering Series ((FSES))

Abstract

One of the promising nonfood applications of zein and wheat gluten (WG), two prolamin-based proteins, is in the packaging area. Advances in microscopy and imaging technologies allow the development of biodegradable prolamin protein-based films that are functionally tunable. The functional properties of the prolamin films are strongly influenced by the molecular organization of the proteins as well as the surface topology. Atomic force microscopy (AFM) can provide such information, especially the surface topology along with understanding of film formation mechanism of the proteins. Confocal laser scanning microscopy (CLSM) on the other hand is widely used to visualize the distribution and molecular arrangement of protein components in the prolamin films. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) provide high-magnification images of the microstructure of the films. In addition, some specific chemical bonding interactions can be accessed by infrared (IR) spectroscopy. This chapter reviews the recent studies on prolamin films that were investigated using imaging technologies, coupled with other techniques to evaluate the effectiveness and properties of these biodegradable films. The rich information gained from imaging technologies is useful for prolamin protein film production, especially zein protein and WG protein for packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aithani D, Mohanty AK (2006) Value-added new materials from byproduct of corn based ethanol industries: blends of plasticized corn gluten meal and poly(epsilon-caprolactone). Ind Eng Chem Res 45:6147–6152

    Article  CAS  Google Scholar 

  • Alessandrini A, Facci P (2005) AFM: a versatile tool in biophysics. Meas Sci Technol 16:R65

    Article  CAS  Google Scholar 

  • Angellier-Coussy, H., Torres-Giner, S., Morel, M. H., Gontard, N., Gastaldi, E. (2008). Functional properties of wheat gluten/montmorillonite materials with respect to formulation and processing conditions. App Polym Sci, 107, 487–496

    Google Scholar 

  • Argos P, Pedersen K, Marks MD, Larkins BA (1982) A structural model for maize zein proteins. J Biol Chem 257:9984–9990

    CAS  Google Scholar 

  • Cho SW, Gallstedt M, Hedenqvist MS (2010) Effects of glycerol content and film thickness on the properties of vital wheat gluten films cast at pH 4 and 11. J App Polym Sci 117:3506–3514

    CAS  Google Scholar 

  • De Graaf LA (2000) Denaturation of proteins from a non-food perspective. J Biotechnol 79:299–306

    Article  CAS  Google Scholar 

  • Emmambux M N, Stading M (2007) In situ tensile deformation of zein films with plasticizers and filler materials. Food Hydrocoll 21:1245–1255

    Article  CAS  Google Scholar 

  • EPA (2011) Municipal solid waste in the United States. http://www.epa.gov/osw/nonhaz/municipal/pubs/MSWcharacterization_fnl_060713_2_rpt.pdf. Accessed 20 Feb 2014

  • Escamilla-Garcia M, Calderon-Dominguez G, Chanona-Perez JJ, Farrera-Rebollo RR, Andraca-Adame JA, Arzate-Vazquez I, Mendez-Mendez JV, Moreno-Ruiz LA (2013) Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. Int J Biol Macromol 61:196–203

    Article  CAS  Google Scholar 

  • Esen A (1986) Separation of alcohol-soluble proteins (zeins) from maize into three fractions by differential solubility. Plant Physiol 80:623–627

    Article  CAS  Google Scholar 

  • Ghanbarzadeh B, Oromiehie A, Musavi M, Falcone P, D-Jomeh Z, Rad E (2007) Study of mechanical properties, oxygen permeability and AFM topography of zein films plasticized by polyols. Packag Technol Sci 20:155–163

    Article  CAS  Google Scholar 

  • GIEWS, Global information and early warning system on food and agriculture (2012) http://www.fao.org/docrep/016/al993e/al993e00.pdf. Accessed 20 Feb 2014

  • Gillgren T, Barker SA, Belton PS, Georget DM R, Stading M (2009) Plasticization of zein: a thermomechanical, FTIR, and dielectric study. Biomacromolecules 10:1135–1139

    Article  CAS  Google Scholar 

  • Gu L, Wang M, Zhou J (2013) Effects of protein interactions on properties and microstructure of zein-gliadin composite films. J Food Eng 119:288–298

    Article  CAS  Google Scholar 

  • Guillard V, Chevillard A, Gastaldi E, Gontard N, Angeillier-Coussy H (2013) Water transport mechanisms in wheat gluten based (nano) composite materials. Eur Polym J 49:1337–1346

    Article  CAS  Google Scholar 

  • Guo YC, Liu ZD, An HJ, Li MQ, Hu J (2005) Nano-structure and properties of maize zein studied by atomic force microscopy. J Cereal Sci 41:277–281

    Article  CAS  Google Scholar 

  • Haward SJ, Shewry PR, Miles MJ, McMaster TJ (2010) Direct real-time imaging of protein adsorption onto hydrophilic and hydrophobic surfaces. Biopolymer 93:74–84

    Article  CAS  Google Scholar 

  • He J, Penson S, Powers S, Hawes C, Shewry P, Tosi P (2013) Spatial patterns of gluten protein and polymer distribution in wheat grain. J Agri Food Chem 61:6207–6215

    Article  CAS  Google Scholar 

  • Hernandez-Izquierdo VM, Krochta JM (2008) Thermoplastic processing of proteins for film formation—a review. J Food Sci 73:R30–R39

    Google Scholar 

  • Hernandez-Munoz P, Kanavouras A, Ng PK, Gavara R (2003) Development and characterization of biodegradable films made from wheat gluten protein fractions. J Agric Food Chem 51:7647–7654

    Article  CAS  Google Scholar 

  • Jackson M. and Mantsch, H. H. (1995). The use and misuse of FTIR Spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol, 30, 95–120

    Google Scholar 

  • Jagadeesh D, Kumar BP, Sushakara P, Prasad CV, Rajulu AV, Song JI (2013) Preparation and properties of propylene glycol plasticized wheat protein isolate novel green films. J Polym Environ 21:930–936

    Article  CAS  Google Scholar 

  • Jerez A, Partal P, Martinez I, Gallegos C Guerrero A (2007) Protein-based bioplastics: effect of thermo-mechanical processing. Rheol Acta 46:711–720

    Article  CAS  Google Scholar 

  • Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Clegg F, Aucejo S (2012) Renewable fibers and bio-based materials for packaging applications—a review of recent developments. Bioresources 7:2506–2552

    Article  Google Scholar 

  • Kokini, J. L., Cocero, A. M., Madeka, H., de Graaf, E. (1994). The development of state diagrams for cereal proteins. Trends Food Sci Tech. 5, 281–288

    Google Scholar 

  • Kuktaite R, Plivelic T, Cerenius Y, Hedenqvist M, Gallstedt M, Marttila S, Ignell R, Popineau Y, Tranquet O, Shewry P, Johansson E (2011) Structure and morphology of wheat gluten films: from polymeric protein aggregates toward superstructure arrangements. Biomacromolecules 12:1438–1448

    Article  CAS  Google Scholar 

  • Kuktaite R, Plivelic TS, Ture H, Hedenqvist M S, Gallstedt M, Marttila S, Johansson E (2012) Changes in the hierarchical protein polymer structure: urea and temperature effects on wheat gluten films. RSC Adv 2:11908–11914

    Article  CAS  Google Scholar 

  • Lagrain B, Goderis B, Brijs K, Delcour JA (2010) Molecular basis of processing wheat gluten toward biobased materials. Biomacromolecules 11:533–541

    Article  CAS  Google Scholar 

  • Lawton JW (2002) Zein: a history of processing and use. Cereal Chem 79:1–18

    Article  CAS  Google Scholar 

  • Lawton JW (2004) Plasticizers for zein: their effect on tensile properties and water absorption of zein films. Cereal Chem 81:1–5

    Article  CAS  Google Scholar 

  • Leroy E, Jacquet P, Coativy G, Reguerre AL, Lourdin D (2012) Compatibilization of starch–zein melt processed blends by an ionic liquid used as plasticizer. Carbohydr Polym 89:955–963

    Article  CAS  Google Scholar 

  • Luecha J, Sozer N, Kokini JL (2010) Synthesis and properties of corn zein/montmorillonite nanocomposite films. J Mater Sci 45:3529–3537

    Article  CAS  Google Scholar 

  • Madeka H, Kokini JL (1996) Effect of glass transition and cross-linking on rheological properties of zein: development of a preliminary state diagram. Cereal Chem 73:433–438

    CAS  Google Scholar 

  • Matsushima N, Danno G, Takezawa H, Izumi Y (1997) Three-dimensional structure of maize alpha-zein proteins studied by small-angle X-ray scattering. Biochim Biophys Acta 1339:14–22

    Article  CAS  Google Scholar 

  • McMaster TJ, Miles MJ, Wannerberger L, Eliasson AC, Shewry PR, Tatham AS (1999) Identification of microphases in mixed alpha- and omega-gliadin protein films investigated by atomic force microscopy. J Agri Food Chem 47:5093–5099

    Article  CAS  Google Scholar 

  • Olabarrieta I, Gallstedt M, Ispizua I, Sarasua JR, Hedenqvist MS (2006) Properties of aged montmorillonite–wheat gluten composite films. J Agri Food Chem 54:1283–1288

    Article  CAS  Google Scholar 

  • Panchapakesan C, Sozer N, Dogan H, Huang QR, Kokini JL (2012) Effect of different fractions of zein on the mechanical and phase properties of zein films at nano-scale. J Cereal Sci 55:174–182

    Article  CAS  Google Scholar 

  • Pol H, Dawson P, Acton J, Ogale A (2002) Soy protein isolate/corn-zein laminated films: transport and mechanical properties. J Food Sci 67:212–217

    Article  CAS  Google Scholar 

  • Reddy N, Yang YQ (2013) Thermoplastic films from plant proteins. J App Polym Sci 130:729–738

    Article  CAS  Google Scholar 

  • Roy S, Weller C, Gennadios A, Zeece M, Testin R (1999) Physical and molecular properties of wheat gluten films cast from heated film-forming solutions. J Food Sci 64:57–60

    Article  CAS  Google Scholar 

  • Schwartz DK (1997) Langmuir-Blodgett film structure. Surf Sci Rep 27:245–334

    Article  Google Scholar 

  • Selling GW, Sessa DJ (2007) Sample preparation and testing methods affect the physical properties and evaluation of plasticized zein. Ind Crop Prod 25:266–273

    Article  CAS  Google Scholar 

  • Sessa DJ, Mohamed A, Byars JA, Hamaker SA H, Selling GW (2007) Properties of films from corn zein reacted with glutaraldehyde. J App Polym Sci 105:2877–2883

    Article  CAS  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  CAS  Google Scholar 

  • Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J 267:1–12

    Article  CAS  Google Scholar 

  • Shi K, Kokini JL, Huang QR (2009) Engineering zein films with controlled surface morphology and hydrophilicity. J Agri Food Chem 57:2186–2192

    Article  CAS  Google Scholar 

  • Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crop Prod 13:171–192

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    Article  CAS  Google Scholar 

  • Tatham AS, Shewry PR (2000) Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem Sci 25:567–571

    Article  CAS  Google Scholar 

  • Taylor J, Anyango JO, Taylor JRN (2013) Developments in the science of zein, kafirin, and gluten protein bioplastic materials. Cereal Chem 90:344–357

    Article  CAS  Google Scholar 

  • Toufeili I, Lambert IA, Kokini JL (2002) Effect of glass transition and cross-linking on rheological properties of gluten: development of a preliminary state diagram. Cereal Chem 79:138–142

    Article  CAS  Google Scholar 

  • Tunc, S., Angellier, H., Cahyana, Y., Chalier, P., Gontard, N., Gastaldi, E. (2007). Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. J Membrane Sci.289, 159–168

    Google Scholar 

  • Ture H, Blomfeldt TOJ, Gallstedt M, Hedenqvist MS (2012) Properties of wheat-gluten/montmorillonite nanocomposite films obtained by a solvent-free extrusion process. J Polym Environ 20:1038–1045

    Article  CAS  Google Scholar 

  • Xu H, Chai YW, Zhang GY (2012) Synergistic effect of oleic acid and glycerol on zein film plasticization. J Agri Food Chem 60:10075–10081

    Article  CAS  Google Scholar 

  • Zhang HK, Mittal G (2010) Biodegradable protein-based films from plant resources: a review. Environ Prog Sustain Energy 29:203–220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef L. Kokini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luecha, J., Kokini, J. (2016). Molecular Organization and Topography of Prolamin Protein Films. In: Sozer, N. (eds) Imaging Technologies and Data Processing for Food Engineers. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-24735-9_8

Download citation

Publish with us

Policies and ethics