Skip to main content

Optimal Conditions and Environmental Factors Involved in Breeding Earthworms for Vermicomposting

  • Chapter
  • First Online:
Prospects of Organic Waste Management and the Significance of Earthworms

Abstract

Like any other living organism, earthworm requires certain favourable conditions to feed, grow and survive (Table 7.1). As a potentially important bio-agent in waste management practises, earthworms are cultured in large scale depending on the species required. To achieve better growth, certain environmental conditions are usually provided in laboratory or industrial level. Such optimal conditions and the effect of various environmental factors are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aira M et al (2006) C to N ratio strongly affects population structure of Eisenia fetida in vermicomposting systems. Eur J Soil Biol 42:S1 27–S1 31

    Article  CAS  Google Scholar 

  • Atiyeh RM, Dominguez J, Subler S, Edwards CA (2000) Changes in biochemical properties of cow manure during processing by earthworms (Eisenia Andrei, Bouche) and the effects on seedling growth. Pedobiologia 44:709–724

    Article  Google Scholar 

  • Berry EC, Jordan D (2001) Temperature and soil moisture content effects on the growth of Lumbricus terrestris (Oligochaeta: Lumbricidae) under laboratory conditions. Soil Biol Biochem 33:133–136

    Article  CAS  Google Scholar 

  • Bhattacharjee G, Chaudhuri PS (2002) Cocoon production, morphology, hatching pattern and fecundity in seven tropical earthworm species-a laboratory based investigation. J Biol 27:283–294

    Google Scholar 

  • Bhiday MR (1994) Earthworms in agriculture. Indian Farm 43:32

    Google Scholar 

  • Dominguez J, Edwards CA (1997) Effects of stocking rate and moisture content on the growth and maturation of Eisenia andrei (Oligochaeta) in pig manure. Soil Bio Biochem 29:743–746

    Article  CAS  Google Scholar 

  • Dominguez J, Edwards CA (2011) Biology and ecology of earthworm species used for vermicomposting. Taylor & Francis Group, LLC, Oxford, pp 35–37

    Google Scholar 

  • Dominguez J, Edwards CA, Dominguez J (2001) The biology and population dynamics of Eudrilus eugeniae (Kinberg) (Oligochaeta) in cattle waste solids. Pedobiologia 45:341–353

    Article  Google Scholar 

  • Domínguez J, Edwards CA, Webster M (2000) Vermicomposting of sewage sludge: effect of bulking materials on the growth and reproduction of the earthworm Eisenia andrei. Pedobiologia (Jena) 44:24–32

    Article  Google Scholar 

  • Doube BM, Schimdt O, Killham K, Correll R (1997) Influence of mineral soil on the palatability of organic matter for the lumbricid earthworms: a simple food preference study. Soil Biol Biochem 29:569–575

    Article  CAS  Google Scholar 

  • Duiker S, Stehouwer R (2008) Earthworms. The Pennsylvania State University, Code UC182 R2.5 M08/13mpc

    Google Scholar 

  • Edwards CA (1982) Production of earthworm protein for animal feed from potato waste. In: Ledward DA, Taylor AJ, Lawrie RA (eds) Upgrading waste for feed and food. Butterworths, London

    Google Scholar 

  • Edwards CA (1988) Breakdown of animal, vegetable and industrial organic waste by earthworms. Agric Ecosyst Environ 24:21–31

    Article  Google Scholar 

  • Edwards CA (1995) Earthworm. McGraw Hill Encyclopedia, New york, US, pp 81–83

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) The biology and ecology of earthworms, 3rd edn. Publ. Chapman & Hall, London, p 426

    Google Scholar 

  • Edwards CA, Dominguez J, Neuhauser EF (1998) Growth and reproduction of Perionyx excavates (Perr.) (Megascolecidae) as factors in organic waste management. Biol Fertil Soils 27:155–161

    Article  Google Scholar 

  • Elvira C, Sampedro L, Benitez E, Nogales R (1997) Vermicomposting of sludges from paper mill and dairy industries with Eisenia Andrei: a pilot-scale study. Bioresour Technol 63:205–211

    Article  Google Scholar 

  • Fernandez-Gomez MJ, Nogales R, Isnam H, Romero E, Goberna M (2011) Role of vermicompost chemical composition, microbial functional diversity, and fungal community structure in their microbial respiratory response to three pesticides. Bioresour Technol 102:9638–9645

    Google Scholar 

  • Fornes F, Mendoza-Hernandez D, Garcia-de-la-Fuente R, Abad M, Belda RM (2012) Composting versus vermicomposting: a comparative study of organic matter evolution through straight and combined process. Bioresour Technol 118:296–305

    Article  CAS  Google Scholar 

  • Gajalakshmi S, Abbasi SA (2003) Earthworms and vermicomposting. Indian J Biotechnol 3:486–494

    Google Scholar 

  • Garg VK, Gupta R (2011) Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida. Ecotoxicol Environ Saf 74:19–24

    Article  CAS  Google Scholar 

  • Grant WC (1955) Studies on moisture relationships in earthworms. Ecology 36:400–407

    Article  Google Scholar 

  • Gunadi B, Blount C, Edwards CA (2002) The growth and fecundity of Eisenia fetida (Savingy) in cattle solids pre-composted for different periods. Pedobiologia 47:321–329

    Article  Google Scholar 

  • Gunadi B, Edwards CA, Blount C IV (2003) The influence of different moisture levels on the growth, fecundity and survival of Eisenia fetida (Savigny) in cattle and pig manure solids. Eur J Soil Biol 39:19–24

    Article  Google Scholar 

  • Hartenstein R, Amico L (1983) Production and carrying capacity for the earthworm Lumbricus terrestris in culture. Soil Biol Biochem 15:51–54

    Article  Google Scholar 

  • Holmstrup M, Ostergaard IK, Nielson A, Hansen BT (1991) The relationship between temperature and cocoon incubation time for some Lumbricid earthworm species. Pedobiologia 35:179–184

    Google Scholar 

  • Huang W (2013) Effects of different influent C/N ratios on the performance of various earthworm eco-filter systems: nutrient removal and greenhouse gas emission. World J Microbiol Biotechnol 30:109–118

    Article  Google Scholar 

  • Ismail SA (2005) The earthworm book. Other India Press, Mapusa, p 101

    Google Scholar 

  • Jairajpuri MS (1993) Earthworms and vermiculture: an introduction. In: Earthworm resources and vermiculture. ZSI, Kolkata, India, pp 1–5

    Google Scholar 

  • Joshi SN (1997) Worm composting. Inora News Lett 1:2

    Google Scholar 

  • Kaplan DL, Hartenstein R, Neuhauser EF, Malecki MR (1980) Physiochemical requirements in the environment of earthworm Eisenia foetida. Soil Biol Biochem 12:347–352

    Article  Google Scholar 

  • Khan AA (2006) Vermicomposting of poultry litter using Eisenia foetida. Master of Science dissertation, Oklahoma State University, Norman, Oklahama, US.

    Google Scholar 

  • Lavelle P (1992) Conservation of soil fertility in low-input agricultural systems of the humid tropics by manipulating earthworm communities (macrofauna project). European Economic Community project no.TS2-0292-F (EDB)

    Google Scholar 

  • Munnoli PM, Da Silva JAT, Saroj B (2010) Dynamics of the soil-earthworm-plant relationship: a review. Dyn Soil Dyn Plant 4(1):1–21

    Google Scholar 

  • Nayak AK, Rath LK (1996) Vermiculture and its application. Kisan World 21(1):61–62

    Google Scholar 

  • Ndegwa PM, Thompson SA (2000) Effects of C-to-N ratio on vermicomposting of biosolids. Bioresour Technol 75(1):7–12

    Article  CAS  Google Scholar 

  • Neuhauser EF, Hartenstein R, Kaplan DL (1980) Growth of earthworm Eisenia foetida in relation to population density and food rationing. Oikos 35(1):93–98

    Article  Google Scholar 

  • Piconne et al (1986) Vermicomposting of different organic wastes. In: Compost production and use symposium, 17–19 Apr 1986, Udine, pp 818–821

    Google Scholar 

  • Reddy MV, Pasha M (1993) Influence of rainfall, temperature and some soil physicochemical variables on seasonal population structure and vertical distribution of earthworms in two semi- and tropical grassland soils. Int J Biotech 37:19–26

    Google Scholar 

  • Reinecke AJ, Viljoen SA (1990) The influence of worm density on growth and cocoon production of the compost worm Eisenia fetida (Oligochaeta). Revue d’Ecologie et Biologie du Sol 27:221–230

    Google Scholar 

  • Reinecke AJ, Viljoen SA, Saayman RJ (1992) The suitability of Eudrilus eugeniae, Perionyx excavatus and Eisenia foetida (Oligochaeta) for vermicomposting in Southern Africa in terms of their temperature requirements. Soil Biol Biochem 24:1295–1307

    Article  Google Scholar 

  • Rutikar SK (1997) Some useful information about vermicomposts. Inora Oct (4), 2

    Google Scholar 

  • Shaw P (1986) The development of soil structure by Octolasion tyrtaeum, Aporrectodea turgid and L.terresitris in parent materials belonging to difficult textural classes. Pedobiologia 29:327–339

    Google Scholar 

  • Sherman R (2003) Raising earthworms successfully. North Carolina Cooperative Extensive Service, EBAE, Raleigh, pp 103–183

    Google Scholar 

  • De Silva PMCS (2009) Pesticide effect on earthworms: a tropical perspective. PhD thesis, VU University, Amsterdam, pp 9–82

    Google Scholar 

  • Singh et al (2005) Effect of initial substrate pH on vermicomposting using Perionyx excavates (Perrier 1872). Appl Ecol Environ Res 4(1):85–97

    Article  Google Scholar 

  • Staaf H (1987) Foliage litter turnover and earthworm populations in three beech forests of contrasting soil and vegetation types. Oecologia 72:58–64

    Article  CAS  Google Scholar 

  • Suthar S (2008) Bioconversion of post harvest crop residues and cattle shed manure into value-added products using earthworm Eudrilus eugeniae Kinberg. Ecol Eng 32:206–214

    Google Scholar 

  • Wever LA, Lysyk TJ, Clapperton MJ (2001) The influence of soil moisture and temperature on the survival, aestivation, growth and development of juvenile Aporrectodea tuberculata (Eisen) (Lumbricidae). Pedobiologia 45:121–133

    Article  Google Scholar 

  • Wood TG (1974) The distribution of earthworms (Megascolecidae) in relation to soils, vegetation and altitude on the slopes of Mt. Kosciusko, Australia. J Anim Ecol 43:87–106

    Google Scholar 

  • Zajonc I, Sidar V (1990) Use of some wastes from vermin compost preparation and their influence on growth and reproduction of the earthworm E. fetida. Polnohospodarstvo 36:742–752

    Google Scholar 

  • Zhao YJ, Zhang H, Chao X, Nie E, Li JH, He J, Zheng Z (2011) Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecol Eng 37:1546–1554

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

S, K.K., Ibrahim, M.H., Quaik, S., Ismail, S.A. (2016). Optimal Conditions and Environmental Factors Involved in Breeding Earthworms for Vermicomposting. In: Prospects of Organic Waste Management and the Significance of Earthworms. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-319-24708-3_7

Download citation

Publish with us

Policies and ethics