Skip to main content

Tricuspid Valve Extraction in Transesophageal Echocardiography

  • Conference paper
  • First Online:
Advanced Computer and Communication Engineering Technology

Abstract

In the past decades, echocardiography has appeared as an important modality in medical field to assess heart’s function and structures as well as for diagnosis and evaluation. Many image processing researches are done to enhance the imaging aspect and produce better quality of image. Numerous research have been conducted on mitral valve, but only a few on the geometry or annular dynamics of the tricuspid valve. Accurateness in measuring and reconstructing tricuspid valve is an important issue, not only for surgical decision-making process but also in deciding the suitable surgical technique on patient such as valve implication or ring placement. In this paper, we will discuss on techniques that have been applied recently in measuring and modelling tricuspid valve and as for experiment, 3DTEE image was used using level set technique discussed in this paper. Our findings will be focusing more on those techniques applied on 3D echocardiography images from different angels and positions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tei, C., Pilgrim, J.P., Shah, P., Ormiston, J., Wong, M.: The tricuspid valve annulus: study of size and motion in normal subjects and in patients with tricuspid regurgitation. Circulation 66(3), 665–671 (1982)

    Article  Google Scholar 

  2. Maslow, A.D., Schwartz, C., Singh, A.K.: Assessment of the tricuspid valve: a comparison of four transesophageal echocardiographic windows. J. Cardiothorac. Vasc. Anesth. 18(6), 719–724 (2004)

    Article  Google Scholar 

  3. Fattouch, K., Castrovinci, S., Murana, G., Novo, G., Caccamo, G., Bertolino, E.C., Sampognaro, R., Novo, S., Ruvolo, G., Lancellotti, P.: Multiplane two-dimensional versus real time three-dimensional transesophageal echocardiography in ischemic mitral regurgitation. Echocardiography 28(10), 1125–1132 (2011)

    Article  Google Scholar 

  4. Gabriel, V., Kamp, O., Visser, C.A.: Three-dimensional echocardiography in mitral valve disease. Eur. J. Echocardiogr. 6(6), 443–454 (2005)

    Article  Google Scholar 

  5. Noack, T., Mukherjee, C., Kiefer, P., Emrich, F., Vollroth, M., Ionasec, R.I., Voigt, I., Houle, H., Ender, J., Misfeld, M.: Four-dimensional modelling of the mitral valve by real-time 3D transoesophageal echocardiography: proof of concept. Interact. CardioVasc. Thorac. Surg. 20(2), 200–208 (2015)

    Article  Google Scholar 

  6. Qamruddin, S., Naqvi, T.Z.: Advances in 3D echocardiography for mitral valve, 2011

    Google Scholar 

  7. Muraru, D., Badano, L.P.: ‘Assessment of tricuspid valve morphology and function’: ‘Textbook of real-time three dimensional echocardiography’, pp. 173–182. Springer, Berlin (2011)

    Google Scholar 

  8. Osher, S., & Sethian, J. A.:Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. phys. 79(1), 12–49 (1988)

    Google Scholar 

  9. Shang, Y., Yang, X., Zhu, L., Deklerck, R., Nyssen, E.: Region competition based active contour for medical object extraction. Comput. Med. Imaging Gr. 32(2), 109–117 (2008)

    Google Scholar 

  10. Burlina, P., Sprouse, C., DeMenthon, D., Jorstad, A., Juang, R., Contijoch, F, Abraham, T., Yuh, D., McVeigh, E.: Patient-specific modeling and analysis of the mitral valve using 3D-TEE. In: Book Patient-Specific Modeling and Analysis of the Mitral Valve Using 3D-TEE’, pp. 135–146 (2010)

    Google Scholar 

  11. Sprouse, C., Yuh, D., Abraham, T., Burlina, P.: Computational hemodynamic modeling based on transesophageal echocardiographic imaging. In: Book computational hemodynamic modeling based on transesophageal echocardiographic imaging (2009)

    Google Scholar 

  12. Burlina, P., Mukherjee, R., Juang, R., Sprouse, C.: Recovering endocardial walls from 3D TEE. In: Book Recovering Endocardial Walls from 3D TEE’ (2011)

    Google Scholar 

  13. Wolz, R., Heckemann, R.A., Aljabar, P., Hajnal, J.V., Hammers, A., Lötjönen, J., Rueckert, D., and Initiative, A.s.D.N.: Measurement of hippocampal atrophy using 4D graph-cut segmentation: application to ADNI. NeuroImage, 52(1), 109–118 (2010)

    Google Scholar 

  14. Schneider, R.J., Burke, W.C., Marx, G.R., del Nido, P.J., Howe, R.D.: Modeling mitral valve leaflets from three-dimensional ultrasound. In: Book Modeling Mitral Valve Leaflets from Three-Dimensional Ultrasound (2011)

    Google Scholar 

  15. Linguraru, M.G., Pura, J.A., Chowdhury, A.S., Summers, R.M.: Multi organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization. Lect. Notes Comput. Sci. 6363, 89–96 (2010)

    Article  Google Scholar 

  16. Shi, W., Zhuang, X., Wolz, R., Simon, D., Tung, K., Wang, H., Ourselin, S., Edwards, P., Razavi, R., Rueckert, D.: A multi-image graph cut approach for cardiac image segmentation and uncertainty estimation. Lect. Notes Comput. Sci. 7085, 178–187 (2012)

    Google Scholar 

  17. Juang, R., McVeigh, E.R., Hoffmann, B., Yuh, D., Burlina, P.: Automatic segmentation of the left-ventricular cavity and atrium in 3D ultrasound using graph cuts and the radial symmetry transform. In: Book Automatic segmentation of the left-ventricular cavity and atrium in 3D ultrasound using graph cuts and the radial symmetry transform, pp. 606–609 (2011)

    Google Scholar 

  18. Mahmood, F., Kim, H., Chaudary, B., Bergman, R., Matyal, R., Gerstle, J., Gorman, J.H., Gorman, R.C., Khabbaz, K.R.: Tricuspid annular geometry: a three-dimensional transesophageal echocardiographic study. J. Cardiothorac. Vasc. Anesth. 27(4), 639–646 (2013)

    Article  Google Scholar 

  19. Cheng, J., Foo, S.W., Krishnan, S.M.: Automatic detection of region of interest and center point of left ventricle using watershed segmentation. In: Book Automatic detection of region of interest and center point of left ventricle using watershed segmentation, pp. 149–151 (2005)

    Google Scholar 

  20. Amorim, J.C., dos Reis, M.D.C., de Carvalho, J.L.A., da Rocha, A.F., Camapum, J.F.: Improved segmentation of echocardiographic images using fusion of images from different cardiac cycles. In: Book Improved segmentation of echocardiographic images using fusion of images from different cardiac cycles, pp. 511–514 (2009)

    Google Scholar 

  21. Melo Jr, S.A., Macchiavello, B., Andrade, M.M., Carvalho, J.L., Carvalho, H.S., Vasconcelos, D.F., Berger, P.A., da Rocha, A.F., Nascimento, F.A.O.: Semi-automatic algorithm for construction of the left ventricular area variation curve over a complete cardiac cycle. BioMed. Eng. OnLine, 9, 1–17 (2010)

    Google Scholar 

  22. Fukuda, S., Saracino, G., Matsumura, Y., Daimon, M., Tran, H., Greenberg, N.L., Hozumi, T., Yoshikawa, J., Thomas, J.D., Shiota, T.: Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation a real-time, 3-dimensional echocardiographic study. Circulation, 114(1 suppl), I-492–I-498 (2006)

    Google Scholar 

  23. Kwan, J., Kim, G.-C., Jeon, M.-J., Kim, D.-H., Shiota, T., Thomas, J.D., Park, K.-S., Lee, W.-H.: 3D geometry of a normal tricuspid annulus during systole: a comparison study with the mitral annulus using real-time 3D echocardiography (2007)

    Google Scholar 

  24. Ring, L., Rana, B.S., Kydd, A., Boyd, J., Parker, K., Rusk, R.A.: Dynamics of the tricuspid valve annulus in normal and dilated right hearts: a three-dimensional transoesophageal echocardiography study. Eur. Heart J.-Cardiovasc. Imaging, jes040 (2012)

    Google Scholar 

  25. Dwivedi, G., Mahadevan, G., Jimenez, D., Frenneaux, M., Steeds, R.P.: Reference values for mitral and tricuspid annular dimensions using two-dimensional echocardiography. Echo Res. Pract. 1(2), 43–50 (2014)

    Article  Google Scholar 

  26. Miglioranza, M.H., Mihăilă, S., Muraru, D., Cucchini, U., Iliceto, S., Badano, L.P.: Dynamic changes in tricuspid annular diameter measurement in relation to the echocardiographic view and timing during the cardiac cycle. J. Am. Soc. Echocardiogr. 28(2), 226–235 (2015)

    Article  Google Scholar 

  27. Nishi, H., Toda, K., Miyagawa, S., Yoshikawa, Y., Fukushima, S., Kawamura, M., Yoshioka, D., Saito, T., Ueno, T., Kuratani, T.: Tricuspid annular dynamics before and after tricuspid annuloplasty. Circulation J. 79, 873–879 (2015)

    Google Scholar 

  28. Nasir, N. R. M., Kadiman, S., Rahmat, R. W. O., Dimon, M. Z., & Sulaiman, P. S. (2014, December). 3 Dimensional Reconstruction of Tricuspid Valve Using Transesophagel Echocardiography Images. In Computer Assisted System in Health (CASH), International Conference on 90–95, IEEE (2014)

    Google Scholar 

  29. Naziffa Raha Md Nasir, Rahmita Wirza, P. Suhaiza Sulaiman, Suhaini Kadiman, M. Zamrin Dimon.:Image Segmentation Techniques Using Echocardiography Images, The 3rd International Conference on Computer Science and Computational Mathematics, ICCSCM2014, Langkawi, Malaysia (2014)

    Google Scholar 

  30. Aqeel Al-Surmi, Rahmita Wirza, Ramlan Mahmod, M. Zamrin Dimon.: A new human heart vessel identification, segmentation and 3D reconstruction mechanism. J. cardiothor. surg. 9(1):161 (2014)

    Google Scholar 

  31. Aqeel Al-Surmi, Rahmita Wirza, M. Zamrin Dimon, Ramlan Mahmod, Fatima Khalid.: Three dimensional reconstruction of human heart surface from single image-view under different illumination conditions. Am. J. Appl. Sci. 10(7):669 (2013)

    Google Scholar 

  32. Moosavi Tayebi, R., Suhaiza Binti Sulaiman, P., Wirza, R., Zamrin Dimon, M., Kadiman, S., Khalid, F., and Mazaheri, S.: A fast and accurate method for automatic coronary arterial tree extraction in angiograms. J. Comput. Sc. 10(10):2060–2076 (2014)

    Google Scholar 

  33. Mazaheri S., Sulaiman P., Wirza R., Dimon Z., Khalid F., and Moosavi Tayebi R., “Hybrid Pixel-based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT”, in Computational and Mathematical Methods in Medicine Journal, (MMMI14) (2014)

    Google Scholar 

  34. Moosavi Tayebi, R., Wirza, R., Suhaiza Binti Sulaiman, P., Zamrin Dimon, M., Khalid, F., and Mazaheri, S.:Using Wavelet for X-ray Angiography Enhancement, in Proceeding of International Conference on Agricultural, Ecological and Medical Sciences (AEMS) (2015)

    Google Scholar 

  35. Rahmita Wirza, Aqeel Al-Surmi, Ramlan Mahmod, Fatima Khalid, M. Zamrin Dimon; Single Image Reconstruction of Human Heart Surface with Specular Reflection Remover; Advanced Computer Science Applications and Technologies (ACSAT) (2012)

    Google Scholar 

  36. Moosavi Tayebi, R., Wirza, R., Suhaiza Binti Sulaiman, P., Zamrin Dimon, M., Khalid, F., Al-Surmi, A., and Mazaheri, S.:3D Multimodal Cardiac Data Reconstruction using Angiography and Computerized Tomographic Angiography Registration, published in J. cardiothor. surg. (2015)

    Google Scholar 

  37. Moosavi Tayebi, R., Wirza, R., Suhaiza Binti Sulaiman, P., Zamrin Dimon, M., Khalid, F., Al-Surmi, A., and Mazaheri, S.: Cardiac Components Categorization and Coronary Artery Enhancement in CT Angiography, in Scopus Proceeding of International Conference on Computer Assisted System in Health (CASH) (2014)

    Google Scholar 

  38. Mazaheri s., Suhaiza P., Wirza R. and Moosavi Tayebi R.:Echocardiography Image Segmentation: A Survey, 2nd International Conference on Advanced Computer Science Applications and Technologies–ACSAT2013, Sarawak, Malaysia (2013)

    Google Scholar 

  39. Moosavi Tayebi, R., Suhaiza Binti Sulaiman, P., Wirza, R., Zamrin Dimon, M., Kadiman, S., Nurliyana Binti Abdullah, L., and Mazaheri, S.: Coronary artery segmentation in angiograms with pattern recognition techniques–A survey, in IEEE Proceeding of International Conference on Advanced Computer Science Applications and Technologies, 321–326 (2013)

    Google Scholar 

  40. Mazaheri s., Suhaiza P., Wirza R. and Moosavi Tayebi R.: A Review of Ultrasound and Computed Tomography Registration Approaches, The International Conference on Computer Assisted System in Health, CASH2014, Putrajaya, Malaysia (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naziffa Raha Md Nasir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nasir, N.R.M., Rahmat, R.W.O.K., Sulaiman, P.S., Kadiman, S., Dimon, M.Z. (2016). Tricuspid Valve Extraction in Transesophageal Echocardiography. In: Sulaiman, H., Othman, M., Othman, M., Rahim, Y., Pee, N. (eds) Advanced Computer and Communication Engineering Technology. Lecture Notes in Electrical Engineering, vol 362. Springer, Cham. https://doi.org/10.1007/978-3-319-24584-3_101

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24584-3_101

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24582-9

  • Online ISBN: 978-3-319-24584-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics