Skip to main content

Undesirable Compounds and Spoilage Microorganisms in Wine

  • Chapter
  • First Online:

Abstract

Ethyl carbamate (EC) and biogenic amines (BA) are the only wine compounds of microbial origin with undesirable effects on health. In excessive concentrations, the former is said to be carcinogenic and the latter may induce allergenic-like effects. EC is produced by the reaction of ethanol with urea and, to a very minor extent, citrulline, resulting from the arginine metabolism, by yeast and lactic acid bacteria (LAB), respectively. All Saccharomyces strains produce variable amounts of urea and the final concentration depends on the nitrogen nutrition and the prevailing conditions during alcoholic fermentation. All heterofermentative lactobacilli produce citrulline, but only some strains of Oenococcus oeni do so. BA are produced by only those LAB strains which are able to decarboxylate or deaminate amino acids. The arginine-degrading strains and BA-producing bacteria are characterized by gene clusters which are either stable or not in the genome. Environmental factors concerning the increasing risks of EC and BA accumulation have been identified, including viticultural and enological practices. Based on these findings, recommendations have been made in order to minimize the problem. There are limits for EC concentration, but, in table wines, concentrations are generally below this threshold. There is no regulation concerning BA, as its undesirable effects have not been conclusively demonstrated and remain controversial.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams A, Van Vuuren HJ. Effect of timing of diammonium phosphate addition to fermenting grape must on the production of ethyl carbamate in wine. Am J Enol Vitic. 2010;61:125–9.

    CAS  Google Scholar 

  • Alcaide-Hidalgo JM, Moreno-Arribas MV, Martín-Álvarez PJ, Polo MC. Influence of malolactic fermentation, postfermentative treatments and ageing with lees on nitrogen compounds of red wines. Food Chem. 2007;103:572–81.

    Article  CAS  Google Scholar 

  • An D, Ough CS. Urea excretion and uptake by wine yeasts as affected by various factors. Am J Enol Vitic. 1993;44:35–40.

    CAS  Google Scholar 

  • Arena ME, Manca de Nadra MC. Biogenic amine production by Lactobacillus. J Appl Microb 2001;90:158–62

    Google Scholar 

  • Arena ME, Manca de Nadra MC. Influence of ethanol and low pH on arginine and citrulline metabolism in lactic acid bacteria from wine. Res Microbiol. 2005;156:858–64.

    Article  CAS  Google Scholar 

  • Arena ME, Saguir FM, Manca de Nadra MC. Arginine, citrulline and ornithine metabolism by lactic acid bacteria from wine. Int J Food Microbiol. 1999;52:155–61.

    Article  CAS  Google Scholar 

  • Azevedo Z, Couto JA, Hogg T. Citrulline as the main precursor of ethyl carbamate in model fortified wines inoculated with Lactobacillus hilgardii: a marker of the levels in a spoiled fortified wine. Lett Appl Microbiol. 2002;34:32–6.

    Article  CAS  Google Scholar 

  • Bach B, Colas S, Massini L, Barnavon L, Vuchot P. Effect of nitrogen addition during alcoholic fermentation on the final content of biogenic amines in wine. Ann Microbiol. 2011;61:185–90.

    Article  CAS  Google Scholar 

  • Battaglia R, Conacher HB, Page BD. Ethyl carbamate (urethane) in alcoholic beverages and foods: a review. Food Addit Contam. 1990;7:477–96.

    Article  CAS  Google Scholar 

  • Beland FA, Benson RW, Mellick PW, Kovath RM, Roberts DW, Fang JL, Doerge DR. Effect of ethanol on the tumorigenicity of urethane (ethyl carbamate) in B6C3F1 mice. Food Chem Toxicol. 2005;43:1–19.

    Article  CAS  Google Scholar 

  • Bell S-J, Henschke PA. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res. 2005;11:242–95.

    Article  CAS  Google Scholar 

  • Butzke CE, Bisson LF. Ethyl carbamate. Prevention action manual. Minimized formation of ethyl carbamate in wine. Davis: University of California; 1997.

    Google Scholar 

  • Butzke CE, Vogt EE, Chacon-Rodriguez L. Effects of heat exposure on wine quality during transport and storage. J Wine Res. 2012;23:15–25.

    Article  Google Scholar 

  • Canas BJ, Havery DC, Robinson LR, Sullivan MP, Joe Jr FL, Diachenko GW. Ethyl carbamate levels in selected fermented foods and beverages. J Assoc Off Anal Chem. 1989;72:873–6.

    CAS  Google Scholar 

  • Caruso M, Fiore C, Contursi M, Salzano G, Paparella A, Romano P. Formation of biogenic amines as criteria for the selection of wine yeasts. World J Microbiol Biotechnol. 2002;18:159–63.

    Article  CAS  Google Scholar 

  • Cooper TG, Lam C, Turoscy V. Structural analysis of the dur loci in S. cerevisiae: two domains of a single multifunctional gene. Genetics. 1980;94:555–80.

    CAS  Google Scholar 

  • Cooper TG, Sumrada R. Urea transport in Saccharomyces cerevisiae. J Bacteriol. 1975;121:571–6.

    CAS  Google Scholar 

  • Coton E, Rollan GC, Bertrand A, Lonvaud-Funel A. Histamine-producing lactic acid bacteria in wines: early detection, frequency, and distribution. Am J Enol Vitic. 1998a;49:199–204.

    CAS  Google Scholar 

  • Coton E, Rollan GC, Lonvaud-Funel A. Histidine decarboxylase of Leuconostoc oenos 9204: purification, kinetic properties, cloning and nucleotide sequence of the hdc gene. J Appl Microbiol. 1998b;84:143–51.

    Article  CAS  Google Scholar 

  • Coton E, Torlois S, Bertrand A, Lonvaud-Funel A. Biogenic amines and wine lactic acid bacteria. Bull OIV. 1999;815–816:32–5.

    Google Scholar 

  • Coton M, Romano A, Spano G, Ziegler K, Vetrana C, Desmarais C, Lonvaud-Funel A, Lucas P, Coton E. Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol. 2010;27:1078–85.

    Article  CAS  Google Scholar 

  • Coulon J, Husnik JI, Inglis DL, Van Der Merwe GK, Lonvaud-Funel A, Erasmus DJ, Van Vuuren HJJ. Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. Am J Enol Vitic. 2006;57:113–24.

    CAS  Google Scholar 

  • Couto JA, Hogg T. Diversity of ethanol-tolerant lactobacilli isolated from Douro fortified wine: clustering and identification by numerical analysis of electrophoretic protein profiles. J Appl Bacteriol. 1994;76:487–91.

    Article  CAS  Google Scholar 

  • Dahabieh MS, Husnik JI, Van Vuuren HJ. Functional expression of the DUR3 gene in a wine yeast strain to minimize ethyl carbamate in chardonnay wine. Am J Enol Vitic. 2009;60:537–41.

    CAS  Google Scholar 

  • Dahabieh MS, Husnik JI, Van Vuuren HJ. Functional enhancement of Sake yeast strains to minimize the production of ethyl carbamate in Sake wine. J Appl Microbiol. 2010;109:963–73.

    Article  CAS  Google Scholar 

  • de las Rivas B, Marcobal A, Muñoz R. Improved multiplex-PCR method for the simultaneous detection of food bacteria producing biogenic amines. FEMS Microbiol Lett. 2005;244:367–72.

    Article  Google Scholar 

  • Dennis MJ, Howarth N, Key PE, Pointer M, Massey RC. Investigation of ethyl carbamate levels in some fermented foods and alcoholic beverages. Food Addit Contam. 1989;6:383–9.

    Article  CAS  Google Scholar 

  • Divol B, Tonon T, Morichon S, Gindreau E, Lonvaud-Funel A. Molecular characterization of Oenococcus oeni genes encoding proteins involved in arginine transport. J Appl Microbiol. 2003;94:738–46.

    Article  CAS  Google Scholar 

  • EFSA. Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011;9(10):2393. 1–93.

    Google Scholar 

  • Farias ME, Manca de Nadra MC, Rollán GC, Strasser de Saad AM. Histidine decarboxylase activity in lactic acid bacteria from wine. J Int Sci Vigne Vin. 1993;27:191–9.

    CAS  Google Scholar 

  • Fujinawa S, Burns G, de la Teja P. Application of acid urease to reduction of urea in commercial wines. Am J Enol Vitic. 1990;41:350–4.

    CAS  Google Scholar 

  • García-Marino M, Trigueros A, Escribano-Bailón T. Influence of enological practices on the formation of biogenic amines in quality red wines. J Food Comp Anal. 2010;23:455–62.

    Article  Google Scholar 

  • García-Ruíz A, González-Rompinelli EM, Bartolomé B, Moreno-Arribas MV. Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int J Food Microbiol. 2011;148:115–20.

    Article  Google Scholar 

  • Genbauffe FS, Cooper TG. Induction and repression of the urea amidolyase gene in Saccharomyces cerevisiae. Mol Cell Biol. 1986;6:3954–64.

    Article  CAS  Google Scholar 

  • González Marco A, Jiménez Moreno N, Ancín Azpilicueta C. Influence of addition of yeast autolysate on the formation of amines in wine. J Sci Food Agric. 2006;86:2221–7.

    Article  Google Scholar 

  • Guerrini S, Mangani S, Granchi L, Vincenzini M. Biogenic amine production by Oenococcus oeni. Curr Microbiol. 2002;44:374–8.

    Article  CAS  Google Scholar 

  • Gupta R, Dani HM. In vitro formation of organ-specific ultimate carcinogens of 4-dimethylaminoazobenzene and urethan by microsomes. Toxicol Lett. 1989;45:49–54.

    Article  CAS  Google Scholar 

  • Hasnip S, Caputi A, Crews C, Brereton P. Effects of storage time and temperature on the concentration of ethyl carbamate and its precursors in wine. Food Addit Contam. 2004;21:1155–61.

    Article  CAS  Google Scholar 

  • Hernandez-Ortes P, Lapena AC, Pean-Gallego A, Astrain J, Baron C, Pardo I, et al. Biogenic amine determination in wine fermented in oak barrels: Factors affecting formation. Food Res Int 2008;41:697–706.

    Google Scholar 

  • Ingargiola MC. Etude du carmate d'éthyle dans les vins. Ph.D., Université Victor Segalen Bordeaux 2. 1992.

    Google Scholar 

  • Kanny G, Gerbaux V, Olszewski A, Fremont S, Empereur F, Nabet F, Cabanis JC, Moneret-Vautrin DA. No correlation between wine intolerance and histamine content of wine. J Allergy Clin Immunol. 2001;107:375–8.

    Article  CAS  Google Scholar 

  • Kitamoto K, Oda-Miyazaki K, Gomi K, Kumagai C. Mutant isolation of non-urea producing sake strains by positive selection. J Ferm Bioeng. 1993;75:359–63.

    Article  CAS  Google Scholar 

  • Kitamoto K, Oda K, Gomi K, Takahashi K. Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene. Appl Environ Microbiol. 1991;57:301–6.

    CAS  Google Scholar 

  • Lafon-Lafoucade S. L'histamine des vins. Conn Vigne Vin. 1975;22:11–24.

    Google Scholar 

  • Landete JM, Ferrer S, Pardo I. Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control. 2007;18:1569–74.

    Article  CAS  Google Scholar 

  • Larcher R, Moser S, Menolli AU, Tonidandel L, Nicolini G. Ethyl carbamate formation in sub-optimal wine storage conditions and influence of the yeast starter. J Int Sci Vigne Vin. 2013;47:65–8.

    CAS  Google Scholar 

  • Le Jeune C, Lonvaud-Funel A, Ten Brink B, Hofstra H, Van Der Vossen JMBM. Development of a detection system for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test. J Appl Bacteriol. 1995;78:316–26.

    Article  Google Scholar 

  • Liu SQ, Pritchard GG, Hardman MJ, Pilone GJ. Citrulline production and ethyl carbamate (urethane) precursor formation from arginine degradation by wine lactic acid bacteria Leuconostoc oenos and Lactobacillus buchneri. Am J Enol Vitic. 1994;45:235–42.

    CAS  Google Scholar 

  • Liu SQ, Pritchard GG, Hardman MJ, Pilone GJ. Occurrence of arginine deiminase pathway enzymes in arginine catabolism by wine lactic acid bacteria. Appl Environ Microbiol. 1995;61:310–6.

    CAS  Google Scholar 

  • Lonvaud-Funel A. Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek. 1999;76:317–31.

    Article  CAS  Google Scholar 

  • Lonvaud-Funel A. Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiol Lett. 2001;199:9–13.

    Article  CAS  Google Scholar 

  • Lonvaud-Funel A, Joyeux A. Histamine production by wine lactic acid bacteria: isolation of a histamine-producing strain of Leuconostoc oenos. J Appl Bacteriol. 1994;77:401–7.

    Article  CAS  Google Scholar 

  • Lucas P, Landete J, Coton M, Coton E, Lonvaud-Funel A. The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: characterization and conservation in tyramine-producing bacteria. FEMS Microbiol Lett. 2003;229:65–71.

    Article  CAS  Google Scholar 

  • Lucas P, Lonvaud-Funel A. Purification and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809. FEMS Microbiol Lett. 2002;211:85–9.

    Article  CAS  Google Scholar 

  • Lucas PM, Blancato VS, Claisse O, Magni C, Lolkema JS, Lonvaud-Funel A. Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus. Microbiology. 2007;153:2221–30.

    Article  CAS  Google Scholar 

  • Lucas PM, Claisse O, Lonvaud-Funel A. High frequency of histamine-producing bacteria in the enological environment and instability of the histidine decarboxylase production phenotype. Appl Environ Microbiol. 2008;74:811–7.

    Article  CAS  Google Scholar 

  • Lucas PM, Wolken WA, Claisse O, Lolkema JS, Lonvaud-Funel A. Histamine-producing pathway encoded on an unstable plasmid in Lactobacillus hilgardii 0006. Appl Environ Microbiol. 2005;71:1417–24.

    Article  CAS  Google Scholar 

  • Mangani S, Guerrini S, Granchi L, Vincenzini M. Putrescine accumulation in wine: role of Oenococcus oeni. Curr Microbiol. 2005;51:6–10.

    Article  CAS  Google Scholar 

  • Marcobal A, de las Rivas B, Moreno-Arribas MV, Muñoz R. Identification of the ornithine decarboxylase gene in the putrescine-producer Oenococcus oeni BIFI-83. FEMS Microbiol Lett. 2004;239:213–20.

    Article  CAS  Google Scholar 

  • Marcobal A, Martín-Álvarez PJ, Polo MC, Muñoz R, Moreno-Arribas MV. Formation of biogenic amines throughout the industrial manufacture of red wine. J Food Prot. 2006;69:397–404.

    CAS  Google Scholar 

  • Marks VD, Van Der Merwe GK, Van Vuuren HJ. Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate. FEMS Yeast Res. 2003;3:269–87.

    Article  CAS  Google Scholar 

  • Marquardt P, Werringloer HWJ. Toxicity of wine. Food Cosmet Toxicol. 1965;3:803–10.

    Article  CAS  Google Scholar 

  • Martín-Álvarez PJ, Marcobal A, Polo C, Moreno-Arribas MV. Influence of technological practices on biogenic amine contents in red wines. Eur Food Res Technol. 2006;222:420–4.

    Article  Google Scholar 

  • Monteiro FF, Bisson LF. Amino acid utilization and urea formation during vinifcation fermentation. Am J Enol Vitic. 1991;42:199–208.

    CAS  Google Scholar 

  • Monteiro FF, Bisson LF. Nitrogen supplementation of grape juice. II. Effect of amino acid utilization during fermentation. Am J Enol Vitic. 1992;43:11–7.

    Google Scholar 

  • Moreno-Arribas MV, Polo MC. Occurrence of lactic acid bacteria and biogenic amines in biologically aged wines. Food Microbiol. 2008;25:875–81.

    Article  CAS  Google Scholar 

  • Moreno-Arribas V, Lonvaud-Funel A. Tyrosine decarboxylase activity of Lactobacillus brevis IOEB 9809 isolated from wine and L. brevis ATCC 367. FEMS Microbiol Lett. 1999;180:55–60.

    Article  CAS  Google Scholar 

  • Moreno-Arribas V, Torlois S, Joyeux A, Bertrand A, Lonvaud-Funel A. Isolation, properties and behaviour of tyramine-producing lactic acid bacteria from wine. J Appl Microbiol. 2000;88:584–93.

    Article  CAS  Google Scholar 

  • Nannelli F, Claisse O, Gindreau E, de Revel G, Lonvaud-Funel A, Lucas PM. Determination of lactic acid bacteria producing biogenic amines in wine by quantitative PCR methods. Lett Appl Microbiol. 2008;47:594–9.

    Article  CAS  Google Scholar 

  • Nehme B. Mécanismes de réponses et d'adaptation de la bactrie lactique Oenococcus oeni à son environnement: rôle de deux protéines membranaires (OmrA et FtsH) et d'une voie catabolique, l'arginne déiminase. Ph.D., Université Victor Segalen Bordeaux 2, 2004.

    Google Scholar 

  • Nehme B, Ganga MA, Lonvaud-Funel A. The arginine deiminase locus of Oenococcus oeni includes a putative arginyl-tRNA synthetase ArgS2 at its 3'-end. Appl Microbiol Biotechnol. 2006;70:590–7.

    Article  CAS  Google Scholar 

  • Ortega-Heras M, Perez-Magarino S, del-Villar-Garrachón V, Gonzalez-Huerta C, Moro González LC, Guadarrama Rodríguez A, Villanueva Sánchez S, Gallo González R, Martín de la Helguera S. Study of the effect of vintage, maturity degree, and irrigation on the amino acid and biogenic amine content of a white wine from the Verdejo variety. J Sci Food Agric. 2014;94:2073–82.

    Article  CAS  Google Scholar 

  • Ough CS, Crowell EA, Gutlove BR. Carbamyl compound reactions with ethanol. Am J Enol Vitic. 1988;39:239–42.

    CAS  Google Scholar 

  • Ough CS, Huang Z, Stevens DF. Amino acid uptake by four commercial yeasts at two different temperatures of growth and fermentation: effects on urea excretion and reabsorption. Am J Enol Vitic. 1991;42:26–40.

    CAS  Google Scholar 

  • Ough CS, Trioli G. Urea removal from wine by an acid urease. Am J Enol Vitic. 1988;39:303–7.

    CAS  Google Scholar 

  • Park H-D, Shin M-C, Woo I-S. Antisense-mediated inhibition of arginase (Carl) gene expression in Saccharomyces cerevisiae. J Biosci Bioeng. 2001;92:481–4.

    Article  CAS  Google Scholar 

  • Park KK, Liem A, Stewart BC, Miller JA. Vinyl carbamate epoxide, a major strong electrophilic, mutagenic and carcinogenic metabolite of vinyl carbamate and ethyl carbamate (urethane). Carcinogenesis. 1993;14:441–50.

    Article  CAS  Google Scholar 

  • Radler F. The metabolism of organic acids by lactic acid bacteria. In: Carr JG, Cuttings CV, Withing GC, editors. Lactic acid bacteria in beverages and food. London: Academic; 1975.

    Google Scholar 

  • Romano A, Ladero V, Álvarez MA, Lucas PM. Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus. Int J Food Microbiol. 2014;175:14–9.

    Article  CAS  Google Scholar 

  • Romano A, Trip H, Lonvaud-Funel A, Lolkema JS, Lucas PM. Evidence of two functionally distinct ornithine decarboxylation systems in lactic acid bacteria. Appl Environ Microbiol. 2012;78:1953–61.

    Article  CAS  Google Scholar 

  • Rosi I, Nanelli F, Giovani G. Biogenic amine production by Oenococcus oeni during malolactic fermentation of wines obtained using different strains of Saccharomyces cerevisiae. Food Sci Technol. 2009;42:525–30.

    CAS  Google Scholar 

  • Sattler J, Hesterberg R, Lorenz W, Schmidt U, Crombach M, Stahlknecht CD. Inhibition of human and canine diamine oxidase by drugs used in an intensive care unit: relevance for clinical side effects? Agents Actions. 1985;16:91–4.

    Article  CAS  Google Scholar 

  • Schlatter J, Lutz WK. The carcinogenic potential of ethyl carbamate (urethane): risk assessment at human dietary exposure levels. Food Chem Toxicol. 1990;28:205–11.

    Article  CAS  Google Scholar 

  • Sciancalepore AG, Mele E, Arcadio V, Reddavide F, Grieco F, Spano G, Lucas P, Mita G, Pisignano D. Microdroplet-based multiplex PCR on chip to detect foodborne bacteria producing biogenic amines. Food Microbiol. 2013;35:10–4.

    Article  CAS  Google Scholar 

  • Smit I, Pfliehinger M, Binner A, Grossmann M, Horst WJ, Lohnertz O. Nitrogen fertilisation increases biogenic amines and amino acid concentrations in Vitis vinifera var. Riesling musts and wines. J Sci Food Agric. 2014;94:2064–72.

    Article  CAS  Google Scholar 

  • Sotomayor RE, Collins TF. Mutagenicity, metabolism, and DNA interactions of urethane. Toxicol Ind Health. 1990;6:71–108.

    Article  CAS  Google Scholar 

  • Soufleros E, Barrios M-L, Bertrand A. Correlation between the content of biogenic amines and other wine compounds. Am J Enol Vitic. 1998;49:266–78.

    CAS  Google Scholar 

  • Stevens DF, Ough CS. Ethyl carbamate formation: reaction of urea and citrulline with ethanol in wine under low to normal temperature conditions. Am J Enol Vitic. 1993;44:309–12.

    CAS  Google Scholar 

  • Stoewsand GS, Anderson JL, Munson L. Inhibition by wine of tumorigenesis induced by ethyl carbamate (urethane) in mice. Food Chem Toxicol. 1991;29:291–5.

    Article  CAS  Google Scholar 

  • Tegmo-Larsson IM, Henick-Kling T. The effect of fermentation and extended lees contact on ethyl carbamate formation in New York wine. Am J Enol Vitic. 1990;41:269–71.

    CAS  Google Scholar 

  • Terrade N, Mira de Orduña R. Impact of winemaking practices on arginine and citrulline metabolism during and after malolactic fermentation. J Appl Microbiol. 2006;101:406–11.

    Article  CAS  Google Scholar 

  • Tonon T, Bourdineaud JP, Lonvaud-Funel A. The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res Microbiol. 2001;152:653–61.

    Article  CAS  Google Scholar 

  • Tonon T, Lonvaud-Funel A. Metabolism of arginine and its positive effect on growth and revival of Oenococcus oeni. J Appl Microbiol. 2000;89:526–31.

    Article  CAS  Google Scholar 

  • Torrea D, Ancin C. Content of biogenic amines in a Chardonnay wine obtained through spontaneous and inoculated fermentations. J Agric Food Chem. 2002;50:4895–9.

    Article  CAS  Google Scholar 

  • Trioli G, Ough CS. Causes for inhibition of an acid urease from Lactobacillus fermentus. Am J Enol Vitic. 1989;40:245–52.

    CAS  Google Scholar 

  • Tristezza M, Vetrano C, Bleve G, Spano G, Capozzi V, Logrieco A, Mita G, Grieco F. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol. 2013;36:335–42.

    Article  CAS  Google Scholar 

  • Vigentini I, Romano A, Compagno C, Merico A, Molinari F, Tirelli A, Foschino R, Volonterio G. Physiological and oenological traits of different Dekkera/Brettanomyces bruxellensis strains under wine-model conditions. FEMS Yeast Res. 2008;8:1087–96.

    Article  CAS  Google Scholar 

  • Wolken WA, Lucas PM, Lonvaud-Funel A, Lolkema JS. The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis. J Bacteriol. 2006;188:2198–206.

    Article  CAS  Google Scholar 

  • Yoshizawa K, Takahashi K. Utilisation of urease for decomposition of urea in sake. J Brew Soc Jpn 1988;83:142–144

    Google Scholar 

  • Zhao X, Zou H, Fu J, Chen J, Zhou J, Du G. Nitrogen regulation involved in the accumulation of urea in Saccharomyces cerevisiae. Yeast. 2013;30:437–47.

    Article  CAS  Google Scholar 

  • Zimatkin SM, Anichtchik OV. Alcohol-histamine interactions. Alcohol. 1999;34:141–7.

    Article  CAS  Google Scholar 

  • Zimmerli B, Schlatter J. Ethyl carbamate: analytical methodology, occurrence, formation, biological activity and risk assessment. Mutat Res. 1991;259:325–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Lonvaud-Funel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lonvaud-Funel, A. (2016). Undesirable Compounds and Spoilage Microorganisms in Wine. In: Moreno-Arribas, M., Bartolomé Suáldea, B. (eds) Wine Safety, Consumer Preference, and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-319-24514-0_1

Download citation

Publish with us

Policies and ethics