Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 39))

  • 834 Accesses

Abstract

Graph theoretical approaches have been very successful in the past decade to describe functional and structural aspects of brain networks; see, for example Eguiluz et al., Phys Rev Lett 94(1):018102, 2005 [1], Reijneveld et al., Clin Neurophysiol 118(11):2317–2331, 2007 [2], Turova and Villa, Biosystems 89(1):280–286, 2007, [3], Tlusty and Eckmann, J Phys A Math Theor 42(20):205004, 2009, [4] and Gallos et al., Proc Natl Acad Sci 109(8):2825–2830, 2012 [5]. The existence of functional links between cortical nodes has been postulated in EEG, MEG, and fMRI data Sporns et al., PLOS Comp Biol 1(4):245–251, 2005 [6], Honey et al., Neuroimage 52(3):766–776, 2010 [7], Stam et al., Cereb Cortex 17:92–99, 2007 [8], Bonifazi et al., Science 326(5958):1419–1424, 2009 [9], Deco and Corbetta, Neuroscientist 17(1):107–123, 2011 [10] and Kim et al., NeuroImage Clin 2:414–423, 2013 [11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain Functional networks. Phys Rev Lett 94(1):018102

    Article  Google Scholar 

  2. Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118(11):2317–2331

    Article  Google Scholar 

  3. Turova TS, Villa AE (2007) On a phase diagram for random neural networks with embedded spike timing dependent plasticity. Biosystems 89(1):280–286

    Article  Google Scholar 

  4. Tlusty T, Eckmann JP (2009) Remarks on bootstrap percolation in metric networks. J Phys A Math Theor 42(20):205004

    Article  MathSciNet  MATH  Google Scholar 

  5. Gallos LK, Makse HA, Sigman M (2012) A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proc Natl Acad Sci 109(8):2825–2830

    Article  Google Scholar 

  6. Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLOS Comput Biol 1(4):245–251

    Article  Google Scholar 

  7. Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in the human brain? Neuroimage 52(3):766–776

    Article  Google Scholar 

  8. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99

    Article  Google Scholar 

  9. Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Cossart R (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326(5958):1419–1424

    Article  Google Scholar 

  10. Deco G, Corbetta M (2011) The dynamical balance of the brain at rest. Neuroscientist 17(1):107–123

    Article  Google Scholar 

  11. Kim DJ, Bolbecker AR, Howell J, Rass O, Sporns O, Hetrick WP, O’Donnell BF (2013) Disturbed resting state EEG synchronization in bipolar disorder: a graph-theoretic analysis. NeuroImage Clin 2:414–423

    Article  Google Scholar 

  12. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442

    Article  Google Scholar 

  13. Barabasi A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  MathSciNet  MATH  Google Scholar 

  14. Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2005) Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol Cybern 92:367–379

    Article  MathSciNet  MATH  Google Scholar 

  15. Freeman WJ, Kozma R, Bollobas B, Riordan O (2009) Chapter 7. Scale-free cortical planar network. In: Bollobas B, Kozma R, Miklos D (eds) Handbook of large-scale random networks, vol 18., Series: bolyai mathematical studiesSpringer, New York, pp 277–324

    Chapter  Google Scholar 

  16. Kello CT, Brown GD, Ferrer-i-Cancho R, Holden JG, Linkenkaer-Hansen K, Rhodes T, Van Orden GC (2010) Scaling laws in cognitive sciences. Trends Cogn Sci 14(5):223–232

    Article  Google Scholar 

  17. Breakspear M (2004) Dynamic connectivity in neural systems: theoretical and empirical considerations. Neuroinformatics 2(2):205–225

    Article  Google Scholar 

  18. Chen Q, Shi D (2004) The modeling of scale-free networks. Phys A 333:240–248

    Article  MathSciNet  Google Scholar 

  19. Sporns O, Chialvo DR, Kaiser M et al (2004) Organization, development, and function of complex brain networks. Trends Cogn Sci 8(9):418–425

    Article  Google Scholar 

  20. Braitenberg V, Schuz (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin

    Google Scholar 

  21. Zamora-Lopez G (2009) Linking structure and function of complex cortical networks. Ph.D. thesis, University of Potsdam, Potsdam

    Google Scholar 

  22. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    Google Scholar 

  23. Erdos P, Renyi A (1959) On random graphs. Publ Math Deb 6:290–297

    MATH  Google Scholar 

  24. Erdos P, Renyi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    MathSciNet  MATH  Google Scholar 

  25. Bollobas B (1985/2001) Random graphs. Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  26. Bollobas B, Riordan O (2006) Percolation. Cambridge University Press, Cambridge

    Google Scholar 

  27. Plenz D, Thiagarajan TC (2007) The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends Neurosci 30:101110

    Article  Google Scholar 

  28. Kozma R, Puljic M (2015) Random graph theory and neuropercolation for modeling brain oscillations at criticality. Curr Opin Neurobiol 31:181–188

    Article  Google Scholar 

  29. Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2004) Neuropercolation: a random cellular automata approach to spatio-temporal neurodynamics. Lect Notes Comput Sci LNCS 3305:435–443

    Article  MATH  Google Scholar 

  30. Kozma R (2007) Neuropercolation. Scholarpedia 2(8):1360

    Article  Google Scholar 

  31. Balister P, Bollobas B, Kozma R (2006) Large-scale deviations in probabilistic cellular automata. Random Struct Algorithm 29:399–415

    Article  MATH  Google Scholar 

  32. Balister P, Bollobas B, Johnson JR, Walters M (2010) Random majority percolation. Random Struct Algorithm 36(3):315–340

    MathSciNet  MATH  Google Scholar 

  33. Breskin I, Soriano J, Moses E, Tlusty T (2006) Percolation in living neural networks. Phys Rev Lett 97(18):188102

    Article  Google Scholar 

  34. Franovic I, Milkovic V (2009) Percolation transition at growing spatiotemporal fractal patterns in models of mesoscopic neural networks. Phys Rev E 79(6):061923

    Article  MathSciNet  Google Scholar 

  35. Gewaltig MO, Diesmann M, Aertsen A (2001) Propagation of cortical synfire activity: survival probability in single trials and stability in the mean. Neural Netw 14(6):657–673

    Article  Google Scholar 

  36. Turova TS (2012) The emergence of connectivity in neuronal networks: from bootstrap percolation to auto-associative memory. Brain Res 1434:277–284

    Article  Google Scholar 

  37. Turova T, Vallier T (2015) Bootstrap percolation on a graph with random and local connections. Preprint http://arxiv.org/abs/1502.0149arXiv:1502.01490

  38. Gilbert EN (1959) Random graphs. Ann Math Stat 30(4):1141–1144

    Article  MATH  Google Scholar 

  39. Bollobás B, Janson S, Riordan O (2007) The phase transition in inhomogeneous random graphs. Random Struct Algorithm 31(1):3–122

    Article  MathSciNet  MATH  Google Scholar 

  40. Bollobas B, Riordan O (2003) Results on scale-free random graphs. Handbook of graphs and networks, Wiley, Weinhiem, pp 1–34

    Google Scholar 

  41. Albert R (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  MathSciNet  MATH  Google Scholar 

  42. Dorogovtsev SN (2003) Mendes JFF (2003) Evolution of networks: from biological nets to the Internet and WWW. Oxford University Press, Oxford

    Book  Google Scholar 

  43. Newman M, Barabasi A-L, Watts DJ (eds) (2006) The structure and dynamics of networks. Princeton Studies in Complexity, Princeton University Press, Princeton, p x+582

    Google Scholar 

  44. Bollobas B, Kozma R, Miklos D (eds) (2009) Handbook of large-scale random networks. Bolyai society mathematical studies. Springer, New York

    Google Scholar 

  45. Schneider CM, De Arcangelis L, Herrmann HJ (2011) Scale-free networks by preferential depletion. Europhys Lett. 95(1):16005

    Article  Google Scholar 

  46. Sholl DA (1956) The organization of the cerebral cortex. Methuen-Wiley, London

    Google Scholar 

  47. Barabasi A-L (2002) Linked. The new science of networks. Perseus, Cambridge

    Google Scholar 

  48. Wang XF, Chen G (2002) Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans Circuits Syst Fundam Theory Appl 49:54–62

    Article  MathSciNet  Google Scholar 

  49. Wang XF, Chen GR (2003) Complex networks: small-world, scale-free and beyond. IEEE Trans Circuits Syst 31:6–20

    Google Scholar 

  50. Critchley EM (1979) Drug-induced neurological disease. BMJ 1(6167):862–865

    Article  Google Scholar 

  51. Freeman WJ, Breakspear M (2007) Scale-free neocortical dynamics. Scholarpedia 2(2):1357

    Article  Google Scholar 

  52. Berlekamp, ER, Conway JH, Guy RK (1982) Winning ways for your mathematical plays, volume 1: games in general, Academic Press, New York

    Google Scholar 

  53. Hopfield JJ (1982) Neuronal networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 81:3058–3092

    Google Scholar 

  54. Kauffman S (1993) The origins of order—self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  55. Chua LO (1998) CNN. A paradigm for complexity. World Scientific, Singapore

    Book  MATH  Google Scholar 

  56. Wolfram S (2002) A new kind of science. Wolfram Media Inc., Champaign

    MATH  Google Scholar 

  57. J Phys A (1988) Metastability effects in bootstrap percolation. 21:3801–3813

    Google Scholar 

  58. Gravner J, McDonald E (1997) Bootstrap percolation in a polluted environment. J Stat Phys 87(3–4):915–927

    Article  MathSciNet  MATH  Google Scholar 

  59. Schonmann R (1992) On the behavior of some cellular automata related to bootstrap percolation. Ann Probab 20(1):174–193

    Article  MathSciNet  MATH  Google Scholar 

  60. Adler J (1991) Bootstrap percolation. Phys A 171:453–470

    Article  Google Scholar 

  61. Cerf R, Cirillo EN (1999) Finite size scaling in three-dimensional bootstrap percolation. Ann Probab 27(4):1837–1850

    Article  MathSciNet  MATH  Google Scholar 

  62. Szentagothai J (1978) Specificity versus (quasi-) randomness in cortical connectivity. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex connectivity. Raven Press, New York, pp 77–97

    Google Scholar 

  63. Szentagothai J (1990) Specificity versus (quasi-) randomness revisited. Acta Morphol Hung 38:159–167

    Google Scholar 

  64. Bulsara A, Gammaitoni L (1996) Tuning in to noise. Phys Today 49(3):39–45

    Article  Google Scholar 

  65. Kozma R (2003) On the constructive role of noise in stabilizing itinerant trajectories on chaotic dynamical systems. Chaos 11(3):1078–1090

    Article  MathSciNet  MATH  Google Scholar 

  66. Das A, Gilbert CD (1995) Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375(6534):780–784

    Article  Google Scholar 

  67. Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276

    Article  Google Scholar 

  68. Aradi I, Barna G, Erdi P (1995) Chaos and learning in the olfactory bulb. Int J Intell Syst 10:89

    Article  MATH  Google Scholar 

  69. Freund TF, Buzsáki G (1996) Interneurons of the hippcampus. Hippocampus 6:347–470

    Article  Google Scholar 

  70. Arbib M, Erdi P, Szentagothai J (1997) Neural organization. MIT Press, Cambridge

    MATH  Google Scholar 

  71. Kelso JAS (1995) Dynamic patterns: the self organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  72. Xu D, Principe JC (2004) Dynamical analysis of neural oscillators in an olfactory cortex model. IEEE Trans Neural Netw 15(5):1053–1062

    Article  Google Scholar 

  73. Ilin R, Kozma R (2006) Stability of coupled excitatory-inhibitory neural populations application to control multistable systems. Phys Lett A 360:66–83

    Article  Google Scholar 

  74. Kelso JAS, Engstrom DA (2006) The complementary nature. MIT Press, Cambridge

    Google Scholar 

  75. Kadanoff LP, Ceva H (1971) Determination of an operator algebra for a two-dimensional ising model. Phys Rev B 3:3918

    Article  MathSciNet  Google Scholar 

  76. Odor G (2004) Universality classes in nonequilibrium lattice systems. Rev Mod Phys 76:663–724

    Article  MathSciNet  MATH  Google Scholar 

  77. Janson S, Kozma R, Ruszinkó M, Sokolov Y (2015) Activation process on a long-range percolation graph with power law long edge distribution. Part I phase transition without inhibition (in progress)

    Google Scholar 

  78. Toom AL (1980) Stable and attractive trajectories in multicomponent systems. Multicomponent Random Syst Adv Probab Relat Top 6:540–575

    MathSciNet  MATH  Google Scholar 

  79. Gacs P (2001) Reliable cellular automata with self-organization. J Stat Phys 103:45–267

    Article  MathSciNet  MATH  Google Scholar 

  80. Puljic M, Kozma R (2008) Narrow-band oscillations in probabilistic cellular automata. Phys Rev E 78:026214

    Article  Google Scholar 

  81. Puljic M, Kozma R (2010) Broad-band oscillations by probabilistic cellular automata. J Cell Autom 5(6):491–507

    MathSciNet  MATH  Google Scholar 

  82. Kozma R, Puljic M (2013) Learning effects in neural oscillators. Cogn Comput 5(2):164–169

    Article  MATH  Google Scholar 

  83. Kozma R, Puljic M (2013) Hierarchical random cellular neural networks for system-level brain-like signal processing. Neur Netw 45:101–110

    Article  MATH  Google Scholar 

  84. Puljic M, Kozma R (2005) Activation clustering in neural and social networks. Complexity 10(4):42–50

    Article  MathSciNet  Google Scholar 

  85. Binder K (1981) Finite scale scaling analysis of ising model block distribution function. Z Phys B 43:119–140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kozma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kozma, R., Freeman, W.J. (2016). Short and Long Edges in Random Graphs for Neuropil Modeling. In: Cognitive Phase Transitions in the Cerebral Cortex - Enhancing the Neuron Doctrine by Modeling Neural Fields. Studies in Systems, Decision and Control, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-24406-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24406-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24404-4

  • Online ISBN: 978-3-319-24406-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics